$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Neural Network-Based Intuitive Physics for Non-Inertial Reference Frames 원문보기

IEEE access : practical research, open solutions, v.9, 2021년, pp.114246 - 114254  

Seo, Jongwoo (Korea Culture Technology Institute, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea) ,  Lee, Sang Wan (Korea Advanced Institute of Science and Technology (KAIST), KAIST Center for Neuroscience-Inspired AI, KI for Health Science and Technology, KI for Artificial Intelligence, Daejeon, South Korea)

Abstract AI-Helper 아이콘AI-Helper

Classical mechanics offers us reliable means to predict various physical quantities, but it is difficult to derive the precise dynamic equations underlying most phenomena and obtain physical quantities in real-world situations. Intuitive physics, the ability to intuitively understand and predict phy...

참고문헌 (53)

  1. Proc CogSci Faulty Towers: A hypothetical simulation model of physical support gerstenberg 2017 1 

  2. arXiv 1707 08212 Physical problem solving: Joint planning with symbolic, geometric, and dynamic constraints yildirim 2017 

  3. arXiv 1612 00222 Interaction networks for learning about objects, relations and physics battaglia 2016 

  4. arXiv 1612 00341 A compositional object-based approach to learning physical dynamics chang 2016 

  5. arXiv 1806 08047 Flexible neural representation for physics prediction mrowca 2018 

  6. Proc Asian Conf Comput Vis Unsupervised intuitive physics from visual observations ehrhardt 2018 700 

  7. Proc NIPS Learning to see physics via visual de-animation wu 2017 153 

  8. Proc Int Conf Mach Learn Visual grounding of learned physical models li 2020 5927 

  9. arXiv 1810 01566 Learning particle dynamics for manipulating rigid bodies, deformable objects, and fluids li 2018 

  10. Proc Adv Neural Inf Process Syst Modeling expectation violation in intuitive physics with coarse probabilistic object representations smith 2019 32 8985 

  11. arXiv 1611 01843 Learning to perform physics experiments via deep reinforcement learning denil 2016 

  12. 10.15607/RSS.2019.XV.046 

  13. arXiv 1807 09244 Unsupervised learning of latent physical properties using perception-prediction networks zheng 2018 

  14. Kubricht, James R., Holyoak, Keith J., Lu, Hongjing. Intuitive Physics: Current Research and Controversies. Trends in cognitive sciences, vol.21, no.10, 749-759.

  15. Analytical Mechanics fowles 2005 

  16. Hochreiter, Sepp, Schmidhuber, Jürgen. Long Short-Term Memory. Neural computation, vol.9, no.8, 1735-1780.

  17. Proc Int Conf Mach Learn Learning physical intuition of block towers by example lerer 2016 430 

  18. 10.1007/978-3-030-01246-5_43 

  19. arXiv 1605 01138 A comparative evaluation of approximate probabilistic simulation and deep neural networks as accounts of human physical scene understanding zhang 2016 

  20. arXiv 1812 10972 Reasoning about physical interactions with object-oriented prediction and planning janner 2018 

  21. 10.5244/C.30.39 

  22. Proc Adv Neural Inf Process Syst Galileo: Perceiving physical object properties by integrating a physics engine with deep learning wu 2015 28 127 

  23. LeCun, Yann, Bengio, Yoshua, Hinton, Geoffrey. Deep learning. Nature, vol.521, no.7553, 436-444.

  24. arXiv 1412 6980 Adam: A method for stochastic optimization kingma 2014 

  25. 10.1201/9781420035339 

  26. Proc Siggraph Course An introduction to the Kalman filter welch 2001 8 41 

  27. arXiv 1809 02627 Unity: A general platform for intelligent agents juliani 2018 

  28. Li, J., Heap, A.D.. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics : An International Journal on Ecoinformatics and Computational Ecology, vol.6, no.3, 228-241.

  29. Fischer, Jason, Mikhael, John G., Tenenbaum, Joshua B., Kanwisher, Nancy. Functional neuroanatomy of intuitive physical inference. Proceedings of the National Academy of Sciences of the United States of America, vol.113, no.34, E5072-E5081.

  30. Schafer, A. M., Zimmermann, H. G.. Recurrent Neural Networks Are Universal Approximators. Lecture notes in computer science, vol.4131, 632-640.

  31. J Fac Sci Approximation with artificial neural networks csáji 2001 24 7 

  32. Zhou, Ding-Xuan. Universality of deep convolutional neural networks. Applied and computational harmonic analysis, vol.48, no.2, 787-794.

  33. Introduction to Numerical Analysis hildebrand 1987 

  34. Proc 11th Annu Conf Int Speech Commun Assoc Recurrent neural network based language model mikolov 2010 1 

  35. Lawrence, S., Giles, C.L., Ah Chung Tsoi, Back, A.D.. Face recognition: a convolutional neural-network approach. IEEE transactions on neural networks, vol.8, no.1, 98-113.

  36. Cong, J., Xiao, B.. Minimizing Computation in Convolutional Neural Networks. Lecture notes in computer science, vol.8681, 281-290.

  37. Scherer, D., Muller, A., Behnke, S.. Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition. Lecture notes in computer science, vol.6354, 92-101.

  38. 10.32470/CCN.2018.1132-0 

  39. Mitko, Alex, Fischer, Jason. When it all falls down: the relationship between intuitive physics and spatial cognition. Cognitive research : Principles and Implications, vol.5, no.1, 24-.

  40. 10.1109/CVPR.2015.7298878 

  41. Svozil, Daniel, Kvasnicka, Vladimír, Pospichal, Jir̂í. Introduction to multi-layer feed-forward neural networks. Chemometrics and intelligent laboratory systems : an international journal sponsored by the Chemometrics Society, vol.39, no.1, 43-62.

  42. Serre, Thomas, Oliva, Aude, Poggio, Tomaso. A feedforward architecture accounts for rapid categorization. Proceedings of the National Academy of Sciences of the United States of America, vol.104, no.15, 6424-6429.

  43. Riesenhuber, Maximilian, Poggio, Tomaso. Hierarchical models of object recognition in cortex. Nature neuroscience, vol.2, no.11, 1019-1025.

  44. J Mach Learn Res Dropout: A simple way to prevent neural networks from overfitting srivastava 2014 15 1929 

  45. Shuiwang Ji, Wei Xu, Ming Yang, Kai Yu. 3D Convolutional Neural Networks for Human Action Recognition. IEEE transactions on pattern analysis and machine intelligence, vol.35, no.1, 221-231.

  46. arXiv 1907 04490 Deep Lagrangian networks: Using physics as model prior for deep learning lutter 2019 

  47. Proc Adv Neural Inf Process Syst Hamiltonian neural networks greydanus 2019 32 15379 

  48. Breen, Philip G, Foley, Christopher N, Boekholt, Tjarda, Zwart, Simon Portegies. Newton versus the machine: solving the chaotic three-body problem using deep neural networks. Monthly notices of the Royal Astronomical Society, vol.494, no.2, 2465-2470.

  49. Lagaris, I.E., Likas, A., Fotiadis, D.I.. Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks, vol.9, no.5, 987-1000.

  50. Ullman, Tomer D., Stuhlmüller, Andreas, Goodman, Noah D., Tenenbaum, Joshua B.. Learning physical parameters from dynamic scenes. Cognitive psychology, vol.104, 57-82.

  51. Battaglia, Peter W., Hamrick, Jessica B., Tenenbaum, Joshua B.. Simulation as an engine of physical scene understanding. Proceedings of the National Academy of Sciences of the United States of America, vol.110, no.45, 18327-18332.

  52. 10.1007/978-3-030-01258-8_1 

  53. Iten, Raban, Metger, Tony, Wilming, Henrik, del Rio, Lídia, Renner, Renato. Discovering Physical Concepts with Neural Networks. Physical review letters, vol.124, no.1, 010508-.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로