최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기IEEE access : practical research, open solutions, v.9, 2021년, pp.117554 - 117564
Chang, Dong-Jin (Korea Advanced Institute of Science and Technology, School of Electrical Engineering, Daejeon, South Korea) , Nam, Byeong-Gyu (Chungnam National University, Daejeon, South Korea) , Ryu, Seung-Tak (Korea Advanced Institute of Science and Technology, School of Electrical Engineering, Daejeon, South Korea)
This paper proposes design strategies for a low-cost quantized neural network. To prevent the classification accuracy from being degraded by quantization, a structure-design strategy that utilizes a large number of channels rather than deep layers is proposed. In addition, a squeeze-and-excitation (...
Zhang, Jintao, Wang, Zhuo, Verma, Naveen. In-Memory Computation of a Machine-Learning Classifier in a Standard 6T SRAM Array. IEEE journal of solid-state circuits, vol.52, no.4, 915-924.
IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers 14.3 A 65nm computing-in-memory-based CNN processor with 2.9-to-35.8TOPS/W system energy efficiency using dynamic-sparsity performance-scaling architecture and energy-efficient Inter/Intra-macro data reuse yue 2020 234
IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers 14.2 A 65nm $24.7~\mu\text{J}$ /Frame 12.3 mW activation-similarity-aware convolutional neural network video processor using hybrid precision, inter-frame data reuse and mixed-bit-width difference-frame data codec yuan 2020 232
Hu, Jie, Shen, Li, Albanie, Samuel, Sun, Gang, Wu, Enhua. Squeeze-and-Excitation Networks. IEEE transactions on pattern analysis and machine intelligence, vol.42, no.8, 2011-2023.
arXiv 1704 04861 MobileNets: Efficient convolutional neural networks for mobile vision applications howard 2017
IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers 14.1 A 510nW 0.41 V low-memory low-computation keyword-spotting chip using serial FFT-based MFCC and binarized depthwise separable convolutional neural network in 28nm CMOS shan 2020 230
arXiv 1905 11946 EfficientNet: Rethinking model scaling for convolutional neural networks tan 2019
arXiv 1611 01578 Neural architecture search with reinforcement learning zoph 2016
arXiv 1812 09818 Precision highway for ultra low-precision quantization park 2018
arXiv 1409 1556 Very deep convolutional networks for large-scale image recognition simonyan 2014
arXiv 1512 03385 Deep residual learning for image recognition he 2015
Kanda, K., Sadaaki, H., Sakurai, T.. 90% Write Power-Saving SRAM Using Sense-Amplifying Memory Cell. IEEE journal of solid-state circuits, vol.39, no.6, 927-933.
arXiv 1602 02830 [cs] Binarized neural networks: Training neural networks with weights and activations constrained to +1 or -1 courbariaux 2016
Bankman, Daniel, Yang, Lita, Moons, Bert, Verhelst, Marian, Murmann, Boris.
An Always-On 3.8
Chang, Dong-Jin, Nam, Byeong-Gyu, Ryu, Seung-Tak. Compact Mixed-Signal Convolutional Neural Network Using a Single Modular Neuron. IEEE transactions on circuits and systems. a publication of the IEEE Circuits and Systems Society. I, Regular papers, vol.67, no.12, 5189-5199.
Proc Adv Neural Inf Process Syst (NIPS) ImageNet classification with deep convolutional neural networks krizhevsky 2012 25 1097
Nature Deep learning lecun 2015 10.1038/nature14539 521 436
Jiang, Feibo, Wang, Kezhi, Dong, Li, Pan, Cunhua, Xu, Wei, Yang, Kun. Deep-Learning-Based Joint Resource Scheduling Algorithms for Hybrid MEC Networks. IEEE Internet of things journal : a joint publication of the IEEE Sensors Council, the IEEE Communications Society, the IEEE Computer Society, the IEEE Signal Processing Society, vol.7, no.7, 6252-6265.
Proc 34th Int Conf Mach Learn Analytical guarantees on numerical precision of deep neural networks sakr 2017 70 3007
Jiang, Feibo, Wang, Kezhi, Dong, Li, Pan, Cunhua, Xu, Wei, Yang, Kun. AI Driven Heterogeneous MEC System with UAV Assistance for Dynamic Environment: Challenges and Solutions. IEEE network, vol.35, no.1, 400-408.
arXiv 2003 13630 TResNet: High performance GPU-dedicated architecture ridnik 2020
arXiv 1912 11370 Big transfer (BiT): General visual representation learning kolesnikov 2019
IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers 15.5 A 28nm 64Kb 6T SRAM computing-in-memory macro with 8b MAC operation for AI edge chips si 2020 246
arXiv 1606 06160 [cs] DoReFa-Net: Training low bitwidth convolutional neural networks with low bitwidth gradients zhou 2016
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.