$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Detection of Explosives by SERS Platform Using Metal Nanogap Substrates 원문보기

Sensors, v.21 no.16, 2021년, pp.5567 -   

Adhikari, Samir ,  Ampadu, Emmanuel K. ,  Kim, Minjun ,  Noh, Daegwon ,  Oh, Eunsoon ,  Lee, Donghan

Abstract AI-Helper 아이콘AI-Helper

Detecting trace amounts of explosives to ensure personal safety is important, and this is possible by using laser-based spectroscopy techniques. We performed surface-enhanced Raman scattering (SERS) using plasmonic nanogap substrates for the solution phase detection of some nitro-based compounds, ta...

Keyword

참고문헌 (45)

  1. 1. Dasary S.S.R. Singh A.K. Senapati D. Yu H. Ray P.C. Gold Nanoparticle Based Label-Free SERS Probe for Ultrasensitive and Selective Detection of Trinitrotoluene J. Am. Chem. Soc. 2009 131 13806 13812 10.1021/ja905134d 19736926 

  2. 2. van Dillewijn P. Couselo J.L. Corredoira E. Delgado A. Wittich R.-M. Ballester A. Ramos J.L. Bioremediation of 2,4,6-Trinitrotoluene by Bacterial Nitroreductase Expressing Transgenic Aspen Environ. Sci. Technol. 2008 42 7405 7410 10.1021/es801231w 18939578 

  3. 3. Ewing R.G. Atkinson D.A. Eiceman G.A. Ewing G.J. A Critical Review of Ion Mobility Spectrometry for the Detection of Explosives and Explosive Related Compounds Talanta 2001 54 515 529 10.1016/S0039-9140(00)00565-8 18968275 

  4. 4. Yang J.S. Swager T.M. Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory Materials J. Am. Chem. Soc. 1998 120 5321 5322 10.1021/ja9742996 

  5. 5. Sylvia J.M. Janni J.A. Klein J.D. Spencer K.M. Surface-Enhanced Raman Detection of 2,4-Dinitrotoluene Impurity Vapor as a Marker To Locate Landmines Anal. Chem. 2000 72 5834 5840 10.1021/ac0006573 11128944 

  6. 6. Laurence T.A. Braun G. Talley C. Schwartzberg A. Moskovits M. Reich N. Huser T. Rapid, Solution-Based Characterization of Optimized SERS Nanoparticle Substrates J. Am. Chem. Soc. 2009 131 162 169 10.1021/ja806236k 19063599 

  7. 7. Camden J. Dieringer J.A. Zhao J. Van Duyne R.P. Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing Acc. Chem. Res. 2008 41 1653 1661 10.1021/ar800041s 18630932 

  8. 8. He X. Wang H. Li Z. Chen N. Liu J. Zhang Q. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO–Ag nanorod hybrids Nanoscale 2015 7 8619 8626 10.1039/C4NR07655A 25899553 

  9. 9. Liyanage T.U.L.H. Rael A. Shaffer S. Zaidi S. Goodpaster J.V. Sardar R. Fabrication of a self-assembled and flexible SERS nanosensor for explosive detection at parts-per-quadrillion levels from fingerprints Analyst 2018 143 2012 2022 10.1039/C8AN00008E 29431838 

  10. 10. Huang Y. Liu W. Gong Z. Wu W. Fan M. Wang D. Brolo A.G. Detection of Buried Explosives Using a Surface-Enhanced Raman Scattering (SERS) Substrate Tailored for Miniaturized Spectrometers ACS Sens. 2020 5 2933 2939 10.1021/acssensors.0c01412 32799533 

  11. 11. Ko H. Chang S. Tsukruk V. Porous Substrates for Label-Free Molecular Level Detection of Nanoresonant Organic Molecules ACS Nano 2009 3 181 188 10.1021/nn800569f 19206265 

  12. 12. Shen Z. Su L. Shen Y.-C. Vertically-oriented nanoparticle dimer based on focused plasmonic trapping Opt. Express 2016 24 16052 16065 10.1364/OE.24.016052 27410874 

  13. 13. Kneipp K. Kneipp H. Itzkan I. Dasari R.R. Feld M.S. Ultrasensitive Chemical Analysis by Raman Spectroscopy Chem. Rev. 1999 99 2957 2976 10.1021/cr980133r 11749507 

  14. 14. Kneipp K. Wang Y. Kneipp H. Perelman L.T. Itzkan I. Dasari R.R. Feld M.S. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) Phys. Rev. Lett. 1997 78 1667 1670 10.1103/PhysRevLett.78.1667 

  15. 15. Nie S. Emory S. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering Science 1997 275 1102 1106 10.1126/science.275.5303.1102 9027306 

  16. 16. Hankus M.E. Stratis-Cullum D. Pellegrino P.M. Surface enhanced Raman scattering (SERS)-based next generation commercially available substrate: Physical characterization and biological application Proceedings of the Biosensing and Nanomedicine IV San Diego, CA, USA 21–25 August 2011 Volume 8099 

  17. 17. McNay G. Eustace D. Smith W.E. Faulds K. Graham D. Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS): A Review of Applications Appl. Spectrosc. 2011 65 825 837 10.1366/11-06365 21819771 

  18. 18. Mosier-Boss P.A. Review of SERS Substrates for Chemical Sensing Nanomaterials 2017 7 142 10.3390/nano7060142 

  19. 19. Kneipp K. Wang Y. Dasari R.R. Feld M.S. Gilbert B.D. Janni J. Steinfeld J.I. Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995 51 2171 2175 10.1016/0584-8539(95)01474-7 

  20. 20. Botti S. Almaviva S. Cantarini L. Palucci A. Puiu A. Rufoloni A. Trace level detection and identification of nitro-based explosives by surface-enhanced Raman spectroscopy J. Raman Spectrosc. 2013 44 463 468 10.1002/jrs.4203 

  21. 21. Demeritte T. Kanchanapally R. Fan Z. Singh A.K. Senapati D. Dubey M. Zakar E. Ray P.C. Highly efficient SERS substrate for direct detection of explosive TNT using popcorn-shaped gold nanoparticle-functionalized SWCNT hybrid Analyst 2012 137 5041 5045 10.1039/c2an35984g 22970432 

  22. 22. Chen N. Ding P. Shi Y. Jin T. Su Y. Wang H. He Y. Portable and Reliable Surface-Enhanced Raman Scattering Silicon Chip for Signal-On Detection of Trace Trinitrotoluene Explosive in Real Systems Anal. Chem. 2017 89 5072 5078 10.1021/acs.analchem.7b00521 28349688 

  23. 23. Zhou H. Zhang Z. Jiang C. Guan G. Zhang K. Mei Q. Liu R. Wang S. Trinitrotoluene Explosive Lights up Ultrahigh Raman Scattering of Nonresonant Molecule on a Top-Closed Silver Nanotube Array Anal. Chem. 2011 83 6913 6917 10.1021/ac201407z 21853974 

  24. 24. To K.C. Ben-Jaber S. Parkin I.P. Recent Developments in the Field of Explosive Trace Detection ACS Nano 2020 14 10804 10833 10.1021/acsnano.0c01579 32790331 

  25. 25. Alexander T.A. Le D.M. Characterization of a commercialized SERS-active substrate and its application to the identification of intact Bacillus endospores Appl. Opt. 2007 46 3878 3890 10.1364/AO.46.003878 17538686 

  26. 26. Hadjiivanov K.I. Panayotov D.A. Mihaylov M.Y. Ivanova E.Z. Chakarova K.K. Andonova S.M. Drenchev N.L. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules Chem. Rev. 2021 121 1286 1424 10.1021/acs.chemrev.0c00487 33315388 

  27. 27. Clarkson J. Smith W. Batchelder D.N. Smith D. Coats A.M. A theoretical study of the structure and vibrations of 2,4,6-trinitrotolune J. Mol. Struct. 2003 648 203 214 10.1016/S0022-2860(03)00024-3 

  28. 28. Zapata F. López-López M. García-Ruiz C. Detection and identification of explosives by surface enhanced Raman scattering Appl. Spectrosc. Rev. 2015 51 227 262 10.1080/05704928.2015.1118637 

  29. 29. Primera-Pedrozo O.M. Jerez-Rozo J.I. De La Cruz-Montoya E. Luna-Pineda T. Pacheco-Londono L.C. Hernandez-Rivera S.P. Nanotechnology-Based Detection of Explosives and Biological Agents Simulants IEEE Sensors J. 2008 8 963 973 10.1109/JSEN.2008.923936 

  30. 30. Hernández-Rivera S.P. Briano J.G. De La Cruz-Montoya E. Pérez-Acosta G.A. Jeréz-Rozo J.I. Enhanced Raman Scattering of Nitroexplosives on Metal Oxides and Ag/TiO2 Nanoparticles ACS Symp. Ser. 2009 205 216 10.1021/bk-2009-1016.ch016 

  31. 31. Rozo J.I.J. Chamoun A.M. Peña S.L. Hernández-Rivera S.P. Enhanced Raman scattering of TNT on nanoparticle substrates: Ag colloids prepared by reduction with hydroxylamine hydrochloride and sodium citrate Proceedings of the Defense and Security Symposium Orlando, FL, USA 9–13 April 2007 Volume 6538 653824 

  32. 32. Farrell M.E. Holthoff E.L. Pellegrino P.M. Next-generation surface-enhanced Raman scattering (SERS) substrates for hazard detection Proceedings of the SPIE Defense Security, and Sensing, Baltimore, MD, USA 23–27 April 2012 Volume 8358 835816 

  33. 33. Echols R.T. Christensen M.M. Krisko R.M. Aldstadt J.H. Selective Determination of TNT in Soil Extracts by Sequential Injection Spectrophotometry Anal. Chem. 1999 71 2739 2744 10.1021/ac990122d 

  34. 34. Dick L.A. McFarland A.D. Haynes C. Van Duyne R.P. Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss J. Phys. Chem. B 2002 106 853 860 10.1021/jp013638l 

  35. 35. Adhikari S. Kim M. Lee J. Jang Y. Hong C. Jeong Y. Baek J. Lee J. Lee S. Kim J. Six Inch Uniform and High Enhancement SERS Substrate with Hole-sphere Gold Nanogaps for Quantitative Measurements 2021 Unpublished work 

  36. 36. Kim J. Lee C. Lee Y. Lee J. Park S. Park S. Nam J. Synthesis, Assembly, Optical Properties, and Sensing Applications of Plasmonic Gap Nanostructures Adv. Mater. 2021 2006966 10.1002/adma.202006966 34013617 

  37. 37. Wang L. Kafshgari M.H. Meunier M. Optical Properties and Applications of Plasmonic-Metal Nanoparticles Adv. Funct. Mater. 2020 30 1 28 10.1002/adfm.202005400 

  38. 38. Yamamoto M. Matsumae T. Kurashima Y. Takagi H. Suga T. Itoh T. Higurashi E. Comparison of Argon and Oxygen Plasma Treatments for Ambient Room-Temperature Wafer-Scale Au–Au Bonding Using Ultrathin Au Films Micromachines 2019 10 119 10.3390/mi10020119 

  39. 39. Almaviva S. Botti S. Cantarini L. Fantoni R. Lecci S. Palucci A. Puiu A. Rufoloni A. Ultrasensitive RDX detection with commercial SERS substrates J. Raman Spectrosc. 2013 45 41 46 10.1002/jrs.4413 

  40. 40. Tuschel D.D. Mikhonin A.V. Lemoff B.E. Asher S.A. Deep Ultraviolet Resonance Raman Excitation Enables Explosives Detection Appl. Spectrosc. 2010 64 425 432 10.1366/000370210791114194 20412628 

  41. 41. Gruzdkov Y.A. Gupta Y.M. Vibrational Properties and Structure of Pentaerythritol Tetranitrate J. Phys. Chem. A 2001 105 6197 6202 10.1021/jp004425j 

  42. 42. Infante-Castillo R. Pacheco L. Hernández-Rivera S.P. Vibrational spectra and structure of RDX and its 13C- and 15N-labeled derivatives: A theoretical and experimental study Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2010 76 137 141 10.1016/j.saa.2010.02.051 

  43. 43. Miao M.S. Dreger Z.A. Winey J.M. Gupta Y.M. Density Functional Theory Calculations of Pressure Effects on the Vibrational Structure of α-RDX J. Phys. Chem. A 2008 112 12228 12234 10.1021/jp807285u 18973322 

  44. 44. Liu Y. Perkins R. Liu Y. Tzeng N. Normal mode and experimental analysis of TNT Raman spectrum J. Mol. Struct. 2017 1133 217 225 10.1016/j.molstruc.2016.12.015 

  45. 45. Zhu J. Zangari G. Reed M.L. Tailoring the Wetting Properties of Surface-Modified Nanostructured Gold Films J. Phys. Chem. C 2011 115 17097 17101 10.1021/jp204978m 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로