$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Evaluation of Classification Algorithms to Predict Largemouth Bass (Micropterus salmoides) Occurrence 원문보기

Sustainability, v.13 no.17, 2021년, pp.9507 -   

Kim, Zhonghyun (Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea) ,  Shim, Taeyong (Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea) ,  Ki, Seo Jin (Department of Environmental Engineering, Gyeongsang National University, Jinju 52725, Korea) ,  Seo, Dongil (Department of Environmental Engineering, Chungnam National University, Daejeon 34134, Korea) ,  An, Kwang-Guk (Department of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea) ,  Jung, Jinho (Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea)

Abstract AI-Helper 아이콘AI-Helper

This study aimed to evaluate classification algorithms to predict largemouth bass (Micropterus salmoides) occurrence in South Korea. Fish monitoring and environmental data (temperature, precipitation, flow rate, water quality, elevation, and slope) were collected from 581 locations throughout four m...

참고문헌 (49)

  1. Grenouillet Ensemble modelling of species distribution: The effects of geographical and environmental ranges Ecography 2011 10.1111/j.1600-0587.2010.06152.x 34 9 

  2. McNyset Use of ecological niche modelling to predict distributions of freshwater fish species in Kansas Ecol. Freshw. Fish 2005 10.1111/j.1600-0633.2005.00101.x 14 243 

  3. Vezza Modelling habitat requirements of bullhead (Cottus gobio) in Alpine streams Aquat. Sci. 2014 10.1007/s00027-013-0306-7 76 1 

  4. Fraker Projecting the effects of agricultural conservation practices on stream fish communities in a changing climate Sci. Total Environ. 2020 10.1016/j.scitotenv.2020.141112 747 141112 

  5. Olden Forecasting the spread of invasive rainbow smelt in the Laurentian Great Lakes region of North America Conserv. Biol. 2006 10.1111/j.1523-1739.2006.00508.x 20 1740 

  6. Iguchi Predicting invasions of North American basses in Japan using native range data and a genetic algorithm Trans. Am. Fish. Soc. 2004 10.1577/T03-172.1 133 845 

  7. Frank Scale effects on the performance of niche-based models of freshwater fish distributions Ecol. Model. 2019 10.1016/j.ecolmodel.2019.05.006 405 33 

  8. Conti Drivers of freshwater fish colonisations and extirpations under climate change Ecography 2015 10.1111/ecog.00753 38 510 

  9. Fukuda Modelling the distribution of the pan-continental invasive fish Pseudorasbora parva based on landscape features in the northern Kyushu Island, Japan Aquat. Conserv. Mar. Freshw. Ecosyst. 2013 10.1002/aqc.2336 23 901 

  10. Howeth Predicting invasiveness of species in trade: Climate match, trophic guild and fecundity influence establishment and impact of non-native freshwater fishes Divers. Distrib. 2016 10.1111/ddi.12391 22 148 

  11. Kwon Predicting potential impacts of climate change on freshwater fish in Korea Ecol. Inform. 2015 10.1016/j.ecoinf.2014.10.002 29 156 

  12. Kuhn Building Predictive Models in R Using the caret Package J. Stat. Softw. 2008 10.18637/jss.v028.i05 28 1 

  13. R Core Team (2019). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. Available online: https://www.R-project.org/. 

  14. Thuiller BIOMOD-A platform for ensemble forecasting of species distributions Ecography 2009 10.1111/j.1600-0587.2008.05742.x 32 369 

  15. Gallardo Inter-basin water transfers and the expansion of aquatic invasive species Water Res. 2018 10.1016/j.watres.2018.06.056 143 282 

  16. Buisson Uncertainty in ensemble forecasting of species distribution Glob. Chang. Biol. 2010 10.1111/j.1365-2486.2009.02000.x 16 1145 

  17. Guo Uncertainty in ensemble modelling of large-scale species distribution: Effects from species characteristics and model techniques Ecol. Model. 2015 10.1016/j.ecolmodel.2014.08.002 306 67 

  18. Fearer Comparison of statistical and theoretical habitat models for conservation planning: The benefit of ensemble prediction Ecol. Appl. 2011 10.1890/10-1047.1 21 2269 

  19. Rokach Ensemble-based classifiers Artif. Intell. Rev. 2010 10.1007/s10462-009-9124-7 33 1 

  20. Poulos Ensemble forecasting of potential habitat for three invasive fishes Aquat. Invasions 2012 10.3391/ai.2012.7.1.007 7 59 

  21. Hao Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models Ecography 2020 10.1111/ecog.04890 43 549 

  22. Alcaraz Introduction pathways and establishment rates of invasive aquatic species in Europe Can. J. Fish. Aquat. Sci. 2005 10.1139/f05-017 62 453 

  23. Maezono Community-level impacts induced by introduced largemouth bass and bluegill in farm ponds in Japan Biol. Conserv. 2003 10.1016/S0006-3207(02)00144-1 109 111 

  24. Kamerath Distribution and impacts of warm water invasive fish in Lake Tahoe, USA Aquat. Invasions 2008 10.3391/ai.2008.3.1.7 3 35 

  25. Hodgson Terrestrial prey items in the diet of largemouth bass, Micropterus salmoides, in a small north temperate lake J. Freshw. Ecol. 2005 10.1080/02705060.2005.9664809 20 793 

  26. NIER (2014). Survey and Assessment of Stream/River Ecosystem Health (VII), NIER. Publication Number: 11-1480523-002181-01. 

  27. Shim Integrating hydraulic and physiologic factors to develop an ecological habitat suitability model Environ. Model. Softw. 2020 10.1016/j.envsoft.2020.104760 131 104760 

  28. 10.3390/su122310001 Kim, Z., Shim, T., Koo, Y.M., Seo, D., Kim, Y.O., Hwang, S.J., and Jung, J. (2020). Predicting the impact of climate change on freshwater fish distribution by incorporating water flow rate and quality variables. Sustainability, 12. 

  29. Pletterbauer Impact of climate change on the structure of fish assemblages in European rivers Hydrobiologia 2015 10.1007/s10750-014-2079-y 744 235 

  30. Pont Modelling habitat requirement of European fishes: Do species have similar responses to local and regional environmental constraints? Can. J. Fish. Aquat. Sci. 2005 10.1139/f04-183 62 163 

  31. Yoon Distribution patterns of fish communities with respect to environmental gradients in Korean streams Ann. Limnol. Int. J. Limnol. 2011 10.1051/limn/2011020 47 S63 

  32. Oberdorff A probabilistic model characterizing fish assemblages of French rivers: A framework for environmental assessment Freshw. Biol. 2001 10.1046/j.1365-2427.2001.00669.x 46 399 

  33. Huet Profiles and biology of western European streams as related to fish management Trans. Am. Fish. Soc. 1959 10.1577/1548-8659(1959)88[155:PABOWE]2.0.CO;2 88 155 

  34. Cernadas Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 2014 15 3133 

  35. Hermoso Invasive species and habitat degradation in Iberian streams: An analysis of their role in freshwater fish diversity loss Ecol. Appl. 2011 10.1890/09-2011.1 21 175 

  36. Hao A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD Divers. Distrib. 2019 10.1111/ddi.12892 25 839 

  37. Shifts in the suitable habitat available for brown trout (Salmo trutta L.) under short-term climate change scenarios Sci. Total Environ. 2016 10.1016/j.scitotenv.2015.11.147 544 686 

  38. Krogh Neural network ensembles, cross validation, and active learning Adv. Neural Inf. Process. Syst. 1995 7 231 

  39. Geman Neural networks and the bias/variance dilemma Neural Comput. 1992 10.1162/neco.1992.4.1.1 4 1 

  40. Brown Diversity creation methods: A survey and categorisation Inf. Fusion 2005 10.1016/j.inffus.2004.04.004 6 5 

  41. 10.1109/TCYB.2021.3053165 Bian, Y., and Chen, H. (2021). When does diversity help generalization in classification ensembles?. IEEE Trans. Cybern. 

  42. Didaci, L., Fumera, G., and Roli, F. Diversity in classifier ensembles: Fertile concept or dead end?. Proceedings of the International Workshop on Multiple Classifier Systems. 

  43. Boets Species distribution models for sustainable ecosystem management Developments in Environmental Modelling 2015 10.1016/B978-0-444-63536-5.00008-9 Volume 27 115 

  44. Boets Evaluation and comparison of data-driven and knowledge-supported Bayesian Belief Networks to assess the habitat suitability for alien macroinvertebrates Environ. Model. Softw. 2015 10.1016/j.envsoft.2015.09.005 74 92 

  45. Alofs The abiotic and biotic factors limiting establishment of predatory fishes at their expanding northern range boundaries in Ontario, Canada Glob. Chang. Biol. 2015 10.1111/gcb.12853 21 2227 

  46. Alofs Ontario freshwater fishes demonstrate differing range-boundary shifts in a warming climate Divers. Distrib. 2014 10.1111/ddi.12130 20 123 

  47. Meador Relations between introduced fish and environmental conditions at large geographic scales Ecol. Indic. 2003 10.1016/S1470-160X(03)00013-X 3 81 

  48. Glover Growth of largemouth bass in a dynamic estuarine environment: An evaluation of the relative effects of salinity, diet, and temperature Can. J. Fish. Aquat. Sci. 2013 10.1139/cjfas-2012-0295 70 485 

  49. Hasler Effect of water temperature on laboratory swimming performance and natural activity levels of adult largemouth bass Can. J. Zool. 2009 10.1139/Z09-044 87 589 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로