$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Bovine Satellite Cells Isolated after 2 and 5 Days of Tissue Storage Maintain the Proliferative and Myogenic Capacity Needed for Cultured Meat Production 원문보기

International journal of molecular sciences, v.22 no.16, 2021년, pp.8376 -   

Skrivergaard, Stig ,  Rasmussen, Martin Krøyer ,  Therkildsen, Margrethe ,  Young, Jette Feveile

Abstract AI-Helper 아이콘AI-Helper

Cultured meat is an emerging alternative food technology which aims to deliver a more ethical, sustainable, and healthy muscle-tissue-derived food item compared to conventional meat. As start-up companies are rapidly forming and accelerating this technology, many aspects of this multi-faceted scienc...

주제어

참고문헌 (57)

  1. 1. Bhat Z.F. Kumar S. Bhat H.F. In vitro meat: A future animal-free harvest Crit. Rev. Food Sci. Nutr. 2017 57 782 789 10.1080/10408398.2014.924899 25942290 

  2. 2. Tuomisto H.L. Teixeira De Mattos M.J. Environmental impacts of cultured meat production Environ. Sci. Technol. 2011 45 6117 6123 10.1021/es200130u 21682287 

  3. 3. Our Story—Mosa Meat Available online: https://www.mosameat.com/our-story (accessed on 3 December 2020) 

  4. 4. Crosser N. Bushnell C. Derbes E. Friedrich B. Lamy J. Manu N. Swartz E. 2019 State of the Industry Report Cultivated Meat Good Food Inst. 2020 3 24 35 

  5. 5. Ben-Arye T. Levenberg S. Tissue Engineering for Clean Meat Production Front. Sustain. Food Syst. 2019 3 1 19 10.3389/fsufs.2019.00046 

  6. 6. Fraeye I. Kratka M. Vandenburgh H. Thorrez L. Sensorial and Nutritional Aspects of Cultured Meat in Comparison to Traditional Meat: Much to Be Inferred Front. Nutr. 2020 7 35 10.3389/fnut.2020.00035 32266282 

  7. 7. Bogliotti Y.S. Wu J. Vilarino M. Okamura D. Soto D.A. Zhong C. Sakurai M. Sampaio R.V. Suzuki K. Izpisua Belmonte J.C. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts Proc. Natl. Acad. Sci. USA 2018 115 2090 2095 10.1073/pnas.1716161115 29440377 

  8. 8. Yuan Y. Capturing bovine pluripotency Proc. Natl. Acad. Sci. USA 2018 115 1962 1963 10.1073/pnas.1800248115 29444863 

  9. 9. Du M. Yin J. Zhu M.J. Cellular signaling pathways regulating the initial stage of adipogenesis and marbling of skeletal muscle Meat Sci. 2010 86 103 109 10.1016/j.meatsci.2010.04.027 20510530 

  10. 10. Okamura L.H. Cordero P. Palomino J. Parraguez V.H. Torres C.G. Peralta O.A. Myogenic Differentiation Potential of Mesenchymal Stem Cells Derived from Fetal Bovine Bone Marrow Anim. Biotechnol. 2018 29 1 11 10.1080/10495398.2016.1276926 28267409 

  11. 11. Ramírez-Espinosa J.J. González-Dávalos L. Shimada A. Pinã E. Varela-Echavarria A. Mora O. Bovine (Bos taurus) Bone Marrow Mesenchymal Cell Differentiation to Adipogenic and Myogenic Lineages Cells Tissues Organs 2015 201 51 64 10.1159/000440878 26565958 

  12. 12. Specht E.A. Welch D.R. Rees Clayton E.M. Lagally C.D. Opportunities for applying biomedical production and manufacturing methods to the development of the clean meat industry Biochem. Eng. J. 2018 132 161 168 10.1016/j.bej.2018.01.015 

  13. 13. Snijders T. Nederveen J.P. McKay B.R. Joanisse S. Verdijk L.B. van Loon L.J.C. Parise G. Satellite cells in human skeletal muscle plasticity Front. Physiol. 2015 6 1 21 10.3389/fphys.2015.00283 25688210 

  14. 14. Yin H. Price F. Rudnicki M.A. Satellite cells and the muscle stem cell niche Physiol. Rev. 2013 93 23 67 10.1152/physrev.00043.2011 23303905 

  15. 15. Summerbell D. Halai C. Rigby P.W.J. Expression of the myogenic regulatory factor Mrf4 precedes or is contemporaneous with that of Myf5 in the somitic bud Mech. Dev. 2002 117 331 335 10.1016/S0925-4773(02)00208-3 12204280 

  16. 16. Zammit P.S. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis Semin. Cell Dev. Biol. 2017 72 19 32 10.1016/j.semcdb.2017.11.011 29127046 

  17. 17. Tapscott S.J. The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription Development 2005 132 2685 2695 10.1242/dev.01874 15930108 

  18. 18. Yablonka-Reuveni Z. Day K. Vine A. Shefer G. Defining the transcriptional signature of skeletal muscle stem cells J. Anim. Sci. 2008 86 E207 10.2527/jas.2007-0473 17878281 

  19. 19. Blais A. Tsikitis M. Acosta-Alvear D. Sharan R. Kluger Y. Dynlacht B.D. An initial blueprint for myogenic differentiation Genes Dev. 2005 19 553 569 10.1101/gad.1281105 15706034 

  20. 20. Molkentin J.D. Olson E.N. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors Proc. Natl. Acad. Sci. USA 1996 93 9366 9373 10.1073/pnas.93.18.9366 8790335 

  21. 21. Liu N. Nelson B.R. Bezprozvannaya S. Shelton J.M. Richardson J.A. Bassel-Duby R. Olson E.N. Requirement of MEF2A, C, and D for skeletal muscle regeneration Proc. Natl. Acad. Sci. USA 2014 111 4109 4114 10.1073/pnas.1401732111 24591619 

  22. 22. Kassar-Duchossoy L. Gayraud-Morel B. Gomès D. Rocancourt D. Buckingham M. Shinin V. Tajbakhsh S. Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice Nature 2004 431 466 471 10.1038/nature02876 15386014 

  23. 23. Hinterberger T.J. Sassoon D.A. Rhodes S.J. Konieczny S.F. Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development Dev. Biol. 1991 147 144 156 10.1016/S0012-1606(05)80014-4 1715299 

  24. 24. Henderson C.A. Gomez C.G. Novak S.M. Mi-Mi L. Gregorio C.C. Overview of the muscle cytoskeleton Compr. Physiol. 2017 7 891 944 10.1002/cphy.c160033 28640448 

  25. 25. Hnia K. Ramspacher C. Vermot J. Laporte J. Desmin in muscle and associated diseases: Beyond the structural function Cell Tissue Res. 2015 360 591 608 10.1007/s00441-014-2016-4 25358400 

  26. 26. Weiss A. Leinwand L.A. The mammalian myosin heavy chain gene family Annu. Rev. Cell Dev. Biol. 1996 12 417 439 10.1146/annurev.cellbio.12.1.417 8970733 

  27. 27. Simsa R. Yuen J. Stout A. Rubio N. Fogelstrand P. Kaplan D.L. Extracellular heme proteins influence bovine myosatellite cell proliferation and the color of cell-based meat Foods 2019 8 521 10.3390/foods8100521 31640291 

  28. 28. Post M.J. Cultured meat from stem cells: Challenges and prospects Meat Sci. 2012 92 297 301 10.1016/j.meatsci.2012.04.008 22543115 

  29. 29. Melzener L. Verzijden K.E. Buijs A.J. Post M.J. Flack J.E. Cultured beef: From small biopsy to substantial quantity J. Sci. Food Agric. 2021 101 7 14 10.1002/jsfa.10663 32662148 

  30. 30. Li X. Zhang G. Zhao X. Zhou J. Du G. Chen J. A conceptual air-lift reactor design for large scale animal cell cultivation in the context of in vitro meat production Chem. Eng. Sci. 2020 211 115269 10.1016/j.ces.2019.115269 

  31. 31. Erker L. Azuma H. Lee A.Y. Guo C. Orloff S. Eaton L. Benedetti E. Jensen B. Finegold M. Willenbring H. Therapeutic liver reconstitution with murine cells isolated long after death Gastroenterology 2010 139 1019 1029 10.1053/j.gastro.2010.05.082 20621682 

  32. 32. Liu X. Zhu Y. Gao W. Isolation of neural stem cells from the spinal cords of low temperature preserved abortuses J. Neurosci. Methods 2006 157 64 70 10.1016/j.jneumeth.2006.03.025 16682082 

  33. 33. Celikkan F.T. Mungan C. Sucu M. Ulus A.T. Cinar O. Ili E.G. Can A.L.P. Optimizing the transport and storage conditions of current Good Manufacturing Practice–grade human umbilical cord mesenchymal stromal cells for transplantation (HUC-HEART Trial) Cytotherapy 2019 21 64 75 10.1016/j.jcyt.2018.10.010 30455106 

  34. 34. Latil M. Rocheteau P. Châtre L. Sanulli S. Mémet S. Ricchetti M. Tajbakhsh S. Chrétien F. Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity Nat. Commun. 2012 3 1 12 10.1038/ncomms1890 

  35. 35. Mahipal Singh H.S.A. Recovery of fibroblast-like cells after 160 days of postmortem storage of goat skin tissues in refrigerated media J. Vet. Sci. Technol. 2015 06 10.4172/2157-7579.1000236 

  36. 36. Chaillou1 T. Lanner J.T. Regulation of myogenesis and skeletal muscle regeneration: Effects of oxygen levels on satellite cell activity FASEB J. 2016 30 3929 3941 10.1096/fj.201600757R 27601440 

  37. 37. Csete M. Oxygen in the cultivation of stem cells Ann. N. Y. Acad. Sci. 2005 1049 1 8 10.1196/annals.1334.001 15965101 

  38. 38. Bürgers H.F. Schelshorn D.W. Wagner W. Kuschinsky W. Maurer M.H. Acute anoxia stimulates proliferation in adult neural stem cells from the rat brain Exp. Brain Res. 2008 188 33 43 10.1007/s00221-008-1336-6 18330547 

  39. 39. Liu W. Wen Y. Bi P. Lai X. Liu X.S. Liu X. Kuang S. Hypoxia promotes satellite cell self-renewal and enhances the efficiency of myoblast transplantation Development 2012 139 2857 2865 10.1242/dev.079665 22764051 

  40. 40. Csete M. Walikonis J. Slawny N. Wei Y. Korsnes S. Doyle J.C. Wold B. Oxygen-mediated regulation of skeletal muscle satellite cell proliferation and adipogenesis in culture J. Cell. Physiol. 2001 189 189 196 10.1002/jcp.10016 11598904 

  41. 41. Baquero-Perez B. Kuchipudi S.V. Nelli R.K. Chang K.C. A simplified but robust method for the isolation of avian and mammalian muscle satellite cells BMC Cell Biol. 2012 13 10.1186/1471-2121-13-16 

  42. 42. Ding S. Swennen G.N.M. Messmer T. Gagliardi M. Molin D.G.M. Li C. Zhou G. Post M.J. Maintaining bovine satellite cells stemness through p38 pathway Sci. Rep. 2018 8 1 12 10.1038/s41598-018-28746-7 29311619 

  43. 43. Ishii K. Sakurai H. Suzuki N. Mabuchi Y. Sekiya I. Sekiguchi K. Akazawa C. Recapitulation of Extracellular LAMININ Environment Maintains Stemness of Satellite Cells In Vitro Stem Cell Rep. 2018 10 568 582 10.1016/j.stemcr.2017.12.013 29337118 

  44. 44. Shahini A. Vydiam K. Choudhury D. Rajabian N. Nguyen T. Lei P. Andreadis S.T. Efficient and high yield isolation of myoblasts from skeletal muscle Stem Cell Res. 2018 30 122 129 10.1016/j.scr.2018.05.017 29879622 

  45. 45. Balci-Hayta B. Bekircan-Kurt C.E. Aksu E. Dayangac-Erden D. Tan E. Erdem-Ozdamar S. Establishment of primary myoblast cell cultures from cryopreserved skeletal muscle biopsies to serve as a tool in related research & development studies J. Neurol. Sci. 2018 393 100 104 10.1016/j.jns.2018.08.018 30153568 

  46. 46. Karlsson J.O.M. Toner M. Long-term storage of tissues by cryopreservation: Critical issues Biomaterials 1996 17 243 256 10.1016/0142-9612(96)85562-1 8745321 

  47. 47. Murphy D.P. Nicholson T. Jones S.W. O’Leary M.F. MyoCount: A software tool for the automated quantification of myotube surface area and nuclear fusion index [version 1; referees: 2 approved] Wellcome Open Res. 2019 4 6 10.12688/wellcomeopenres.15055.1 30906880 

  48. 48. Rasmussen M.K. Zamaratskaia G. Ekstrand B. Gender-related Differences in Cytochrome P450 in Porcine Liver - Implication for Activity, Expression and Inhibition by Testicular Steroids Reprod. Domest. Anim. 2011 46 616 623 10.1111/j.1439-0531.2010.1714.x 21091800 

  49. 49. Rasmussen M.K. Bertholdt L. Gudiksen A. Pilegaard H. Knudsen J.G. Impact of fasting followed by short-term exposure to interleukin-6 on cytochrome P450 mRNA in mice Toxicol. Lett. 2018 282 93 99 10.1016/j.toxlet.2017.10.011 29030272 

  50. 50. Andersen C.L. Jensen J.L. Ørntoft T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets Cancer Res. 2004 64 5245 5250 10.1158/0008-5472.CAN-04-0496 15289330 

  51. 51. Stern-Straeter J. Bonaterra G.A. Hörmann K. Kinscherf R. Goessler U.R. Identification of valid reference genes during the differentiation of human myoblasts BMC Mol. Biol. 2009 10 66 10.1186/1471-2199-10-66 19573231 

  52. 52. Bonnet M. Bernard L. Bes S. Leroux C. Selection of reference genes for quantitative real-time PCR normalisation in adipose tissue, muscle, liver and mammary gland from ruminants Animal 2013 7 1344 1353 10.1017/S1751731113000475 23552195 

  53. 53. Moretti I. Ciciliot S. Dyar K.A. Abraham R. Murgia M. Agatea L. Akimoto T. Bicciato S. Forcato M. Pierre P. MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity Nat. Commun. 2016 7 1 12 10.1038/ncomms12397 

  54. 54. Nygaard A.-B. Bøttcher C. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR BMC Mol. Biol. 2007 10.1186/1471-2199-8-67 17697375 

  55. 55. Li M. Wu X. Guo X. Bao P. Ding X. Chu M. Liang C. Yan P. Identification of optimal reference genes for examination of gene expression in different tissues of fetal yaks Czech J. Anim. Sci. 2017 62 426 434 10.17221/75/2016-CJAS 

  56. 56. Wu X. Zhou X. Ding X. Chu M. Liang C. Pei J. Xiong L. Bao P. Guo X. Yan P. Reference gene selection and myosin heavy chain (MyHC) isoform expression in muscle tissues of domestic yak (Bos grunniens) PLoS ONE 2020 15 e0228493 10.1371/journal.pone.0228493 32027673 

  57. 57. Kaur R. Sodhi M. Sharma A. Sharma V.L. Verma P. Swami S.K. Kumari P. Mukesh M. Selection of suitable reference genes for normalization of quantitative RT-PCR (RT-qPCR) expression data across twelve tissues of riverine buffaloes (Bubalus bubalis) PLoS ONE 2018 13 10.1371/journal.pone.0191558 29509770 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로