$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A strain rate dependent nonlinear elastic orthotropic model for SFRC structures

Journal of building engineering, v.42, 2021년, pp.102466 -   

Lee, MinJoo ,  Kwak, Hyo-Gyoung

초록이 없습니다.

참고문헌 (68)

  1. Theor. Appl. Fract. Mech. Carpinteri 91 66 2017 10.1016/j.tafmec.2017.03.015 Mode I fracture toughness of fibre reinforced concrete 

  2. IOP Conf. Ser. Mater. Sci. Eng. Chiew 431 10 2018 10.1088/1757-899X/431/4/042006 Behaviour of plain concrete and steel fibre reinforced concrete (SFRC) under biaxial stresses- A review 

  3. Mag. Concr. Res. Thomas 19 385 2013 Mechanical properties of steel fibre concrete 

  4. Compos. Struct. Park 162 313 2017 10.1016/j.compstruct.2016.12.022 Matrix-strength-dependent strain-rate sensitivity of strain-hardening fiber-reinforced cementitious composites under tensile impact 

  5. Construct. Build. Mater. Sun 158 657 2018 10.1016/j.conbuildmat.2017.09.093 A study of strain-rate effect and fiber reinforcement effect on dynamic behavior of steel fiber-reinforced concrete 

  6. Construct. Build. Mater. Yang 190 632 2018 10.1016/j.conbuildmat.2018.09.085 Evaluation of dynamic increase factor models for steel fibre reinforced concrete 

  7. Construct. Build. Mater. Bao 187 394 2018 10.1016/j.conbuildmat.2018.07.203 Combined effects of steel fiber and strain rate on the biaxial compressive behavior of concrete 

  8. Compos. Struct. Chi 109 31 2014 10.1016/j.compstruct.2013.10.054 A unified failure envelope for hybrid fibre reinforced concrete subjected to true triaxial compression 

  9. J. Mater. Civ. Eng. Hu 15 609 2003 10.1061/(ASCE)0899-1561(2003)15:6(609) Biaxial failure model for fiber reinforced concrete 

  10. J. Mater. Civ. Eng. Seow 17 219 2005 10.1061/(ASCE)0899-1561(2005)17:2(219) Failure surface for concrete under multiaxial load-a unified approach 

  11. Fed Highw Adm Murray 77 2007 Users manual for LS-DYNA concrete material model 159 

  12. Holmquist vol. 2 591 1993 A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures 

  13. Crawford 2012 USE AND VALIDATION OF THE RELEASE III K&C CONCRETE MATERIAL MODEL IN LS-DYNA 

  14. Int. J. Impact Eng. Cui 106 202 2017 10.1016/j.ijimpeng.2017.04.003 Discussion on the suitability of concrete constitutive models for high-rate response predictions of RC structures 

  15. Int. J. Impact Eng. Gang 103 211 2017 10.1016/j.ijimpeng.2017.01.027 A strain rate dependent orthotropic concrete material model 

  16. Eng. Struct. Balan 23 333 2001 10.1016/S0141-0296(00)00048-1 3D hypoplastic model for cyclic analysis of concrete structures 

  17. Soil Dynam. Earthq. Eng. Calayir 25 857 2005 10.1016/j.soildyn.2005.05.003 A continuum damage concrete model for earthquake analysis of concrete gravity dam-reservoir systems 

  18. LS-DYNA Keyword User’s Manual LSTC 2 2017 

  19. J. Mater. Civ. Eng. Bencardino 20 255 2008 10.1061/(ASCE)0899-1561(2008)20:3(255) Stress-strain behavior of steel fiber-reinforced concrete in compression 

  20. Materials Lee 8 1442 2015 10.3390/ma8041442 Compressive behavior of fiber-reinforced concrete with end-hooked steel fibers 

  21. Cement Concr. Compos. Nataraja 21 383 1999 10.1016/S0958-9465(99)00021-9 Stress-strain curves for steel-fiber reinforced concrete under compression 

  22. J. Mater. Civ. Eng. Ezeldin 4 415 1992 10.1061/(ASCE)0899-1561(1992)4:4(415) Normal- and high-strength fiber-reinforced concrete under compression 

  23. Construct. Build. Mater. Abbass 168 556 2018 10.1016/j.conbuildmat.2018.02.164 Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete 

  24. Cement Concr. Compos. Carneiro 46 65 2014 10.1016/j.cemconcomp.2013.11.006 Compressive stress-strain behavior of steel fiber reinforced-recycled aggregate concrete 

  25. ACI Mater. J. Lee 110 403 2013 Simplified diverse embedment model for steel fiber-reinforced concrete elements in tension 

  26. Asian J Civ Eng Najafgholipour 19 553 2018 10.1007/s42107-018-0041-4 In-plane shear behavior of masonry walls strengthened with steel fiber-reinforced concrete overlay 

  27. Int. J. Impact Eng. Kwak 86 84 2015 10.1016/j.ijimpeng.2015.07.008 An improved criterion to minimize FE mesh-dependency in concrete structures under high strain rate conditions 

  28. Construct. Build. Mater. Su 114 708 2016 10.1016/j.conbuildmat.2016.04.007 Effects of steel fibres on dynamic strength of UHPC 

  29. Mag. Concr. Res. Wang 63 813 2011 10.1680/macr.2011.63.11.813 Effect of high strain rate loading on compressive behaviour of fibre-reinforced high-strength concrete 

  30. Construct. Build. Mater. Hao 48 521 2013 10.1016/j.conbuildmat.2013.07.022 Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests 

  31. Compos. Struct. Yang 221 110849 2019 10.1016/j.compstruct.2019.04.021 A new constitutive model for steel fibre reinforced concrete subjected to dynamic loads 

  32. J. Eng. Mech. Wang 144 2018 10.1061/(ASCE)EM.1943-7889.0001428 Dynamic multiaxial strength criterion for concrete based on strain rate-dependent strength parameters 

  33. J. Mech. Phys. Solid. Davies 11 155 1963 10.1016/0022-5096(63)90050-4 The dynamic compression testing of solids by the method of the split Hopkinson pressure bar 

  34. Construct. Build. Mater. Wang 136 31 2017 10.1016/j.conbuildmat.2016.12.183 Effect of high strain rate on compressive behavior of strain-hardening cement composite in comparison to that of ordinary fiber-reinforced concrete 

  35. Int. J. Impact Eng. Lu 103 124 2017 10.1016/j.ijimpeng.2017.01.011 A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete 

  36. Lat. Am. J. Solid. Struct. Yu 10 833 2013 10.1590/S1679-78252013000400010 The strain-rate effect of engineering materials and its unified model 

  37. CEBFIP 2010 CEB-FIP Model Code 2010: Comite Euro-International du beton 

  38. J. Mater. Civ. Eng. Perumal 27 2015 10.1061/(ASCE)MT.1943-5533.0001050 Correlation of compressive strength and other engineering properties of high-performance steel fiber-reinforced concrete 

  39. Construct. Build. Mater. Xu 23 3468 2009 10.1016/j.conbuildmat.2009.08.017 Correlations among mechanical properties of steel fiber reinforced concrete 

  40. Construct. Build. Mater. Lin 176 371 2018 10.1016/j.conbuildmat.2018.05.066 Numerical simulation of blast responses of ultra-high performance fibre reinforced concrete panels with strain-rate effect 

  41. Comput. Concr. Gang 20 1 2017 Tensile criterion to minimize FE mesh-dependency in concrete beams under blast loading 

  42. Mater. Res. Marar 14 239 2011 10.1590/S1516-14392011005000042 Compression specific toughness of normal strength steel fiber reinforced concrete (NSSFRC) and high strength steel fiber reinforced concrete (HSSFRC) 

  43. J. Mater. Civ. Eng. Lok 16 54 2004 10.1061/(ASCE)0899-1561(2004)16:1(54) Impact response of steel fiber-reinforced concrete using a split Hopkinson pressure bar 

  44. Mater. Des. Xu 33 42 2012 10.1016/j.matdes.2011.07.004 Experimental study of dynamic compressive properties of fibre reinforced concrete material with different fibres 

  45. Construct. Build. Mater. Yoo 93 477 2015 10.1016/j.conbuildmat.2015.06.006 Predicting the post-cracking behavior of normal- and high-strength steel-fiber-reinforced concrete beams 

  46. Construct. Build. Mater. Kazemi 142 482 2017 10.1016/j.conbuildmat.2017.03.089 Fracture properties of steel fiber reinforced high strength concrete using work of fracture and size effect methods 

  47. Eng. Fract. Mech. Mousavi 216 106517 2019 10.1016/j.engfracmech.2019.106517 Combined effects of steel fibers and water to cementitious materials ratio on the fracture behavior and brittleness of high strength concrete 

  48. Int. J. Impact Eng. Caverzan 45 28 2012 10.1016/j.ijimpeng.2012.01.006 Tensile behaviour of high performance fibre-reinforced cementitious composites at high strain rates 

  49. Int. J. Impact Eng. Schuler 32 1635 2006 10.1016/j.ijimpeng.2005.01.010 Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates 

  50. Int. J. Impact Eng. Lee 140 103545 2020 10.1016/j.ijimpeng.2020.103545 Inelastic orthotropic model for blast analysis of RC slabs 

  51. Mag. Concr. Res. Yan 59 45 2007 10.1680/macr.2007.59.1.45 Dynamic behaviour of concrete in biaxial compression 

  52. J. Eng. Mech. Div. Kupfer 99 853 1973 10.1061/JMCEA3.0001789 Behavior of concrete under biaxial stresses 

  53. J. Eng. Mech. Hampel 135 1274 2009 10.1061/(ASCE)0733-9399(2009)135:11(1274) High-performance concrete under biaxial and triaxial loads 

  54. Cement Concr. Res. Lu 36 1679 2006 10.1016/j.cemconres.2006.05.021 Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression 

  55. Mag. Concr. Res. Lim 57 603 2005 10.1680/macr.2005.57.10.603 Behaviour of plain and steel-fibre-reinforced high-strength concrete under uniaxial and biaxial compression 

  56. ACI Mater. J. Chem 89 32 1992 Behavior of steel fiber reinforced concrete in multiaxial loading 

  57. Cement Concr. Res. Swaddiwudhipong 36 1354 2006 10.1016/j.cemconres.2006.03.008 Modelling of steel fiber-reinforced concrete under multi-axial loads 

  58. ACI Mater. J. Traina 88 354 1991 Biaxial strength and deformational behavior of plain and steel fiber concrete 

  59. Chen 2007 Plasticity in Reinforced Concrete 

  60. Ottosen 1975 Failure and Elasticity of Concrete 

  61. J. Eng. Mech. Sfer 128 156 2002 10.1061/(ASCE)0733-9399(2002)128:2(156) Study of the behavior of concrete under triaxial compression 

  62. ACI Mater. J. Malvar 1998 Review of static and dynamic properties of steel reinforcing bars 

  63. Ugural 2003 Advanced Strength and Applied Elasticity 

  64. Int. J. Impact Eng. Almusallam 81 61 2015 10.1016/j.ijimpeng.2015.03.010 Effectiveness of hybrid-fibers in improving the impact resistance of RC slabs 

  65. Int. J. Impact Eng. Almusallam 58 17 2013 10.1016/j.ijimpeng.2013.02.005 Response of hybrid-fiber reinforced concrete slabs to hard projectile impact 

  66. Mater. Des. Li 82 64 2015 10.1016/j.matdes.2015.05.045 An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads 

  67. Int. J. Impact Eng. Castedo 86 145 2015 10.1016/j.ijimpeng.2015.08.004 Air blast resistance of full-scale slabs with different compositions: numerical modeling and field validation 

  68. Rebelo 2017 A Comparison between Three Air Blast Simulation Techniques in LS-DYNA 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로