$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Deep-learning- and reinforcement-learning-based profitable strategy of a grid-level energy storage system for the smart grid

Journal of energy storage, v.41, 2021년, pp.102868 -   

Han, Gwangwoo ,  Lee, Sanghun ,  Lee, Jaemyung ,  Lee, Kangyong ,  Bae, Joongmyeon

초록이 없습니다.

참고문헌 (57)

  1. Renew. Sustain. Energy Rev. Ellabban 39 748 2014 10.1016/j.rser.2014.07.113 Renewable energy resources: current status, future prospects and their enabling technology 

  2. Environ Resour Econ Johnstone 45 133 2010 10.1007/s10640-009-9309-1 Renewable energy policies and technological innovation: evidence based on patent counts 

  3. Nat. Energy Heptonstall 2020 10.1038/s41560-020-00695-4 A systematic review of the costs and impacts of integrating variable renewables into power grids 

  4. International Renewable Energy Agency (IRENA), Renewable capacity statistics 2021, March 2021, ISBN: 978-92-9260-342-7, Available from: https://www.irena.org/publications/2021/March/Renewable-Capacity-Statistics-2021. 

  5. Energy Convers. Manage. Leonard 164 27 2018 10.1016/j.enconman.2018.02.083 Substitution of coal power plants with renewable energy sources - Shift of the power demand and energy storage 

  6. Renew. Sustain. Energy Rev. Gonzalez-Salazar 82 1497 2018 10.1016/j.rser.2017.05.278 Review of the operational flexibility and emissions of gas- and coal-fired power plants in a future with growing renewables 

  7. IEEE Trans. Power Syst. Fernández 26 206 2011 10.1109/TPWRS.2010.2049133 Assessment of the impact of plug-in electric vehicles on distribution networks 

  8. ACM SIGMETRICS Perform. Eval. Rev. Wang 41 89 2014 10.1145/2567529.2567556 Exploring smart grid and data center interactions for electric power load balancing 

  9. Zhang 440 2012 2012 41st International Conference on Parallel Processing Electricity bill capping for cloud-scale data centers that impact the power markets 

  10. Appl. Energy Han 259 2020 10.1016/j.apenergy.2019.114175 Development of a high-energy-density portable/mobile hydrogen energy storage system incorporating an electrolyzer, a metal hydride and a fuel cell 

  11. 2020 Global EV Outlook 

  12. EV30@30 Campaign, Available from: https://www.iea.org/news/new-cem-campaign-aims-for-goal-of-30-new-electric-vehicle-sales-by-2030. 

  13. Energy Policy Walawalkar 35 2558 2007 10.1016/j.enpol.2006.09.005 Economics of electric energy storage for energy arbitrage and regulation in New York 

  14. Appl. Energy Bradbury 114 512 2014 10.1016/j.apenergy.2013.10.010 Economic viability of energy storage systems based on price arbitrage potential in real-time US electricity markets 

  15. Renew. Sustain. Energy Rev. Zhang 82 3091 2018 10.1016/j.rser.2017.10.030 Energy storage system: current studies on batteries and power condition system 

  16. Glob. Energy Interconnect. Guo 1 79 2018 Application research on large-scale battery energy storage system under Global Energy Interconnection framework 

  17. Appl. Energy Ju 171 184 2016 10.1016/j.apenergy.2016.03.020 A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind-photovoltaic-energy storage system considering the uncertainty and demand response 

  18. IEEE Trans. Smart Grid Alegria 5 937 2014 10.1109/TSG.2013.2286575 CERTS microgrid demonstration with large-scale energy storage and renewable generation 

  19. Int. J. Hydrogen Energy Lee 45 13398 2020 10.1016/j.ijhydene.2020.02.129 Connected evaluation of polymer electrolyte membrane fuel cell with dehydrogenation reactor of liquid organic hydrogen carrier 

  20. Nat. Energy Schmidt 2 17110 2017 10.1038/nenergy.2017.110 The future cost of electrical energy storage based on experience rates 

  21. Energy Procedia Li 159 327 2019 10.1016/j.egypro.2019.01.007 Bringing innovation to market: business models for battery storage 

  22. Appl. Energy Yu 164 702 2016 10.1016/j.apenergy.2015.12.039 Supply-demand balancing for power management in smart grid: a Stackelberg game approach 

  23. Hashmi 1 2011 2011 IEEE Pes Conference on Innovative Smart Grid Technologies Latin America (ISGT LA) Survey of smart grid concepts, architectures, and technological demonstrations worldwide 

  24. Appl. Energy Lu 236 937 2019 10.1016/j.apenergy.2018.12.061 Incentive-based demand response for smart grid with reinforcement learning and deep neural network 

  25. MRS Energy Sustain. Konidena 6 2019 10.1557/mre.2019.5 FERC Order 841 levels the playing field for energy storage 

  26. Appl. Energy McConnell 159 422 2015 10.1016/j.apenergy.2015.09.006 Estimating the value of electricity storage in an energy-only wholesale market 

  27. Appl. Energy Zafirakis 184 971 2016 10.1016/j.apenergy.2016.05.047 The value of arbitrage for energy storage: evidence from European electricity markets 

  28. J. Energy Storage Berg 34 2021 10.1016/j.est.2020.102190 Economic evaluation of operation strategies for battery systems in football stadiums: a Norwegian case study 

  29. IEEE Trans. Power Syst. Krishnamurthy 33 84 2018 10.1109/TPWRS.2017.2685347 Energy storage arbitrage under day-ahead and real-time price uncertainty 

  30. Wang 2018 2018 Ieee Power & Energy Society General Meeting Energy storage arbitrage in real-time markets via reinforcement learning 

  31. J. Energy Storage Kadri 30 2020 10.1016/j.est.2020.101491 Energy storage optimization for global adjustment charge reduction in Ontario 

  32. Renew. Sustain. Energy Rev. Antonopoulos 130 2020 Artificial intelligence and machine learning approaches to energy demand-side response: a systematic review 

  33. Asadinejad 1 2016 North American Power Symposium (NAPS)2016 Sensitivity of incentive based demand response program to residential customer elasticity 

  34. Electr. Power Syst. Res. Asadinejad 158 26 2018 10.1016/j.epsr.2017.12.017 Evaluation of residential customer elasticity for incentive based demand response programs 

  35. IEEE Trans. Power Electron. Díaz 32 5202 2017 10.1109/TPEL.2016.2606653 Centralized control architecture for coordination of distributed renewable generation and energy storage in islanded AC microgrids 

  36. Appl. Energy Yang 164 387 2016 10.1016/j.apenergy.2015.11.072 A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile 

  37. Appl Energy Mishra 264 2020 10.1016/j.apenergy.2020.114632 Analysis of degradation in residential battery energy storage systems for rate-based use-cases 

  38. Appl Energy Waag 102 885 2013 10.1016/j.apenergy.2012.09.030 Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application 

  39. Appl. Energy Lu 220 220 2018 10.1016/j.apenergy.2018.03.072 A dynamic pricing demand response algorithm for smart grid: reinforcement learning approach 

  40. IEEE Trans. Smart Grid Thimmapuram 4 390 2013 10.1109/TSG.2012.2234487 Price elasticity of demand modeling with economic effects on electricity markets using an agent-based model 

  41. Sutton 2018 Reinforcement Learning: an Introduction 

  42. Goodfellow 2016 Deep Learning 

  43. Mach. Learn. Tsitsiklis 16 185 1994 10.1007/BF00993306 Asynchronous stochastic approximation and Q-learning 

  44. Adv. Neural Inf. Process. Syst. Jaakkola 703 1994 Convergence of stochastic iterative dynamic programming algorithms 

  45. Nature LeCun 521 436 2015 10.1038/nature14539 Deep learning 

  46. Lipton Z.C., Berkowitz J., Elkan C. A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:150600019. 2015. 

  47. IEEE Trans. Neural Netw. Bengio 5 157 1994 10.1109/72.279181 Learning long-term dependencies with gradient descent is difficult 

  48. Neural Comput. Hochreiter 9 1735 1997 10.1162/neco.1997.9.8.1735 Long short-term memory 

  49. 10.3115/v1/D14-1179 Cho K., Van Merriënboer B., Gulcehre C., Bahdanau D., Bougares F., Schwenk H., et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:14061078. 2014. 

  50. PJM, Data Miner 2, Available from: http://dataminer2.pjm.com/list. 

  51. IEEE J. Emerg. Sel. Top. Power Electron. Dang 2 79 2014 10.1109/JESTPE.2013.2289991 SoC Feedback control for wind and ESS hybrid power system frequency regulation 

  52. IEEE Trans. Ind. Appl. Choi 54 1949 2018 10.1109/TIA.2018.2794330 Optimal scheduling and operation of the ESS for prosumer market environment in grid-connected industrial complex 

  53. IEEE Trans. Power Deliv. Sun 35 580 2020 10.1109/TPWRD.2019.2916034 Adaptive coordination for power and SoC limiting control of energy storage in an islanded AC microgrid with impact load 

  54. J. Power Source. Choi 111 130 2002 10.1016/S0378-7753(02)00305-1 Factors that affect cycle-life and possible degradation mechanisms of a Li-ion cell based on LiCoO2 

  55. Science Dunn 334 928 2011 10.1126/science.1212741 Electrical Energy Storage for the Grid: a Battery of Choices 

  56. Energy Wen 205 2020 Modified deep learning and reinforcement learning for an incentive-based demand response model 

  57. US Department of Energy (DOE), Energy Storage Grand Challenge Draft Roadmap, July 2020, Available from: https://www.energy.gov/energy-storage-grand-challenge/downloads/energy-storage-grand-challenge-draft-roadmap. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로