$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Preparation and application of 0D-2D nanomaterial hybrid heterostructures for energy applications 원문보기

Materials today advances, v.12, 2021년, pp.100169 -   

Sinha, S. ,  Kim, H. ,  Robertson, A.W.

초록이 없습니다.

참고문헌 (505)

  1. Nature Novoselov 490 192 2012 10.1038/nature11458 A roadmap for graphene 

  2. Science (80-.) Novoselov 353 2016 10.1126/science.aac9439 2D materials and van der Waals heterostructures 

  3. Mater. Today Li 19 322 2016 10.1016/j.mattod.2015.11.003 Heterostructures based on two-dimensional layered materials and their potential applications 

  4. Adv. Electron. Mater. Zeng 4 1700335 2018 10.1002/aelm.201700335 Novel optoelectronic devices: transition-metal-dichalcogenide-based 2D heterostructures 

  5. Adv. Mater. Sun 31 1803831 2019 10.1002/adma.201803831 2D-Organic hybrid heterostructures for optoelectronic applications 

  6. Small Liu 14 1803632 2018 10.1002/smll.201803632 Hybrid architectures based on 2D MXenes and low-dimensional inorganic nanostructures: methods, synergies, and energy-related applications 

  7. Chem. Rev. Yin 115 2483 2015 10.1021/cr500537t Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications 

  8. Nanoscale Luo 8 6904 2016 10.1039/C6NR00546B Recent advances in 2D materials for photocatalysis 

  9. Prog. Mater. Sci. Morales-Narvaez 86 1 2017 10.1016/j.pmatsci.2017.01.001 Graphene-encapsulated materials: synthesis, applications and trends 

  10. Nano Today Thanh Tran 22 100 2018 10.1016/j.nantod.2018.08.006 Emerging core-shell nanostructured catalysts of transition metal encapsulated by two-dimensional carbon materials for electrochemical applications 

  11. Adv. Nano Res. Low 6 357 2018 Molecular interactions between pre-formed metal nanoparticles and graphene families 

  12. Chem. Rev. Georgakilas 116 5464 2016 10.1021/acs.chemrev.5b00620 Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications 

  13. Proc. Natl. Acad. Sci. U.S.A. Chen 116 6635 2019 10.1073/pnas.1817881116 Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis 

  14. Sci. Rep. Shi 3 1839 2013 10.1038/srep01839 Selective decoration of Au nanoparticles on monolayer MoS2 single crystals 

  15. ACS Nano Kim 9 5947 2015 10.1021/acsnano.5b00678 Resilient high catalytic performance of platinum nanocatalysts with porous graphene envelope 

  16. Energy Environ. Sci. Deng 8 1594 2015 10.1039/C5EE00751H Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping 

  17. ACS Catal. Goksu 4 1777 2014 10.1021/cs500167k Tandem dehydrogenation of ammonia borane and hydrogenation of nitro/nitrile compounds catalyzed by graphene-supported NiPd alloy nanoparticles 

  18. Small Luo 11 5984 2015 10.1002/smll.201501783 Interparticle forces underlying nanoparticle self-assemblies 

  19. Nano Res. Lu 2 192 2009 10.1007/s12274-009-9017-8 Facile, noncovalent decoration of graphene oxide sheets with nanocrystals 

  20. ACS Appl. Mater. Interfaces Du 7 1031 2015 10.1021/am5068436 Graphene-supported nickel-platinum nanoparticles as efficient catalyst for hydrogen generation from hydrous hydrazine at room temperature 

  21. Chem. Mater. Robertson 26 1567 2014 10.1021/cm403373q PbTe nanocrystal arrays on graphene and the structural influence of capping ligands 

  22. Dalton Trans. Gong 43 7442 2014 10.1039/C4DT00143E Interactions of Pb and Te atoms with graphene 

  23. Adv. Mater. Mao 22 3521 2010 10.1002/adma.201000520 Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates 

  24. ACS Appl. Mater. Interfaces Dalfovo 6 6384 2014 10.1021/am405753t Synergy between graphene and Au nanoparticles (heterojunction) towards quenching, improving Raman signal, and UV light sensing 

  25. Tetrahedron Lett. Singh 54 6319 2013 10.1016/j.tetlet.2013.09.027 Palladium supported on zinc ferrite: an efficient catalyst for ligand free C-C and C-O cross coupling reactions 

  26. ACS Appl. Mater. Interfaces Diyarbakir 7 3199 2015 10.1021/am507764u Reduced graphene oxide-supported CuPd alloy nanoparticles as efficient catalysts for the sonogashira cross-coupling reactions 

  27. Dalton Trans. Rossi 47 5889 2018 10.1039/C7DT04728B The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts 

  28. ACS Catal. Li 2 1358 2012 10.1021/cs300219j Surfactant removal for colloidal nanoparticles from solution synthesis: the effect on catalytic performance 

  29. J. Mater. Chem. A Guo 8 714 2020 10.1039/C9TA10518B Photon-induced synthesis of ultrafine metal nanoparticles on graphene as electrocatalysts: impact of functionalization and doping 

  30. ACS Catal. Mondal 4 593 2014 10.1021/cs401032p Surfactant-free, stable noble metal-graphene nanocomposite as high performance electrocatalyst 

  31. Langmuir Tao 32 8557 2016 10.1021/acs.langmuir.6b01382 Pd-on-Au supra-nanostructures decorated graphene oxide: an advanced electrocatalyst for fuel cell application 

  32. Langmuir Zhang 33 8899 2017 10.1021/acs.langmuir.7b01519 Electrostatically assembled magnetite nanoparticles/graphene foam as a binder-free anode for lithium ion battery 

  33. J. Mater. Chem. Yang 21 3384 2011 10.1039/c0jm03361h An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation 

  34. J. Phys. Chem. C Qiu 115 15639 2011 10.1021/jp200580u Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells 

  35. J. Mater. Chem. A Wang 2 19815 2014 10.1039/C4TA04624B Facile preparation of 2D sandwich-like CdS nanoparticles/nitrogen-doped reduced graphene oxide hybrid nanosheets with enhanced photoelectrochemical properties 

  36. Carbon N.Y. Li 48 1124 2010 10.1016/j.carbon.2009.11.034 Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation 

  37. Langmuir Ismaili 27 13261 2011 10.1021/la202815g Light-activated covalent formation of gold nanoparticle-graphene and gold nanoparticle-glass composites 

  38. J. Phys. Chem. C Ganguly 123 10646 2019 10.1021/acs.jpcc.9b00303 Organic solvent based synthesis of gold nanoparticle-semiconducting 2H-MoS2 hybrid nanosheets 

  39. J. Phys. Chem. Lett. Kim 4 1227 2013 10.1021/jz400507t Enhanced electrocatalytic properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle decoration 

  40. Nano Lett. Sreeprasad 13 4434 2013 10.1021/nl402278y Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties 

  41. Adv. Funct. Mater. Kim 29 1809151 2019 10.1002/adfm.201809151 Activating MoS2 basal plane with Ni2P nanoparticles for Pt-like hydrogen evolution reaction in acidic media 

  42. Chem. Mater. Li 31 387 2019 10.1021/acs.chemmater.8b03540 Synthesis of surface grown Pt nanoparticles on edge-enriched MoS2 porous thin films for enhancing electrochemical performance 

  43. Npj 2D Mater. Appl. Dunklin 1 43 2017 10.1038/s41699-017-0045-z Production of monolayer-rich gold-decorated 2H-WS2 nanosheets by defect engineering 

  44. Small Sreeprasad 9 341 2013 10.1002/smll.201202196 How do the electrical properties of graphene change with its functionalization? 

  45. Angew. Chem. Int. Ed. Salonen 50 4808 2011 10.1002/anie.201007560 Aromatic rings in chemical and biological recognition: energetics and structures 

  46. Langmuir Zhang 23 7911 2007 10.1021/la700876d Direct measurements of the interaction between pyrene and graphite in aqueous media by single molecule force spectroscopy: understanding the π?π interactions 

  47. Chem. Sci. Martinez 3 2191 2012 10.1039/c2sc20045g Rethinking the term “pi-stacking” 

  48. Nanoscale Huang 2 2733 2010 10.1039/c0nr00473a Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis 

  49. Chem. Sci. Sarkar 2 1326 2011 10.1039/c0sc00634c Organometallic chemistry of extended periodic π-electron systems: hexahapto-chromium complexes of graphene and single-walled carbon nanotubes 

  50. Nano Lett. Che 17 4381 2017 10.1021/acs.nanolett.7b01458 Retained carrier-mobility and enhanced plasmonic-photovoltaics of graphene via ring-centered η 6 functionalization and nanointerfacing 

  51. ACS Nano Che 13 12929 2019 10.1021/acsnano.9b05484 Photo-organometallic, nanoparticle nucleation on graphene for cascaded doping 

  52. ACS Nano Qu 7 4070 2013 10.1021/nn4001963 Noncovalent functionalization of graphene attaching [6,6]-Phenyl-C61-butyric acid methyl ester (PCBM) and application as electron extraction layer of polymer solar cells 

  53. Electrochim. Acta Gan 111 738 2013 10.1016/j.electacta.2013.08.059 Facile synthesis of water-soluble fullerene-graphene oxide composites for electrodeposition of phosphotungstic acid-based electrocatalysts 

  54. ACS Nano Sinha 12 10439 2018 10.1021/acsnano.8b06057 In situ atomic-level studies of Gd atom release and migration on graphene from a metallofullerene precursor 

  55. Nanotechnology Lavie 28 24LT03 2017 10.1088/1361-6528/aa715f Synthesis of core-shell single-layer MoS2 sheathing gold nanoparticles, AuNP@1L-MoS2 

  56. J. Am. Chem. Soc. Tang 139 10133 2017 10.1021/jacs.7b05371 In situ observation and electrochemical study of encapsulated sulfur nanoparticles by MoS2 flakes 

  57. Nat. Commun. Son 8 1561 2017 10.1038/s41467-017-01823-7 Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities 

  58. ACS Nano He 7 4459 2013 10.1021/nn401059h Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material 

  59. Nat. Chem. Liu 9 810 2017 10.1038/nchem.2740 MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction 

  60. Electrochem. Energy Rev. Cheng 2 539 2019 10.1007/s41918-019-00050-6 Single-atom catalysts: from design to application 

  61. Adv. Energy Mater. Zhang 8 1701343 2018 10.1002/aenm.201701343 Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis 

  62. Nat. Rev. Chem. Wang 2 65 2018 10.1038/s41570-018-0010-1 Heterogeneous single-atom catalysis 

  63. Nano Lett. Karthikeyan 19 4581 2019 10.1021/acs.nanolett.9b01555 Which transition metal atoms can Be embedded into two-dimensional molybdenum dichalcogenides and add magnetism? 

  64. Surf. Sci. Fuhr 506 161 2002 10.1016/S0039-6028(02)01153-6 Coverage dependence study of the adsorption of Pd on MoS2(100) 

  65. J. Phys. Chem. C Andersen 115 9025 2011 10.1021/jp110069r Adsorption of potassium on MoS2 (100) surface: a first-principles investigation 

  66. Phys. Rev. B Sevincli 77 195434 2008 10.1103/PhysRevB.77.195434 Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons 

  67. Appl. Catal. B Environ. Liu 297 120389 2021 10.1016/j.apcatb.2021.120389 Single noble metal atoms doped 2D materials for catalysis 

  68. Nano Res. Loh 14 1668 2021 10.1007/s12274-020-3013-4 Substitutional doping in 2D transition metal dichalcogenides 

  69. Nano Today Zhu 30 100829 2020 10.1016/j.nantod.2019.100829 Heteroatom doping of two-dimensional materials: from graphene to chalcogenides 

  70. Adv. Sci. Chen 6 1800941 2019 10.1002/advs.201800941 Hybrids of fullerenes and 2D nanomaterials 

  71. J. Phys. Chem. C Zhou 123 12947 2019 10.1021/acs.jpcc.9b03344 Defect generation and surface functionalization on epitaxial blue phosphorene by C60 adsorption 

  72. Surf. Sci. Rep. Auwarter 74 1 2019 10.1016/j.surfrep.2018.10.001 Hexagonal boron nitride monolayers on metal supports: versatile templates for atoms, molecules and nanostructures 

  73. Nanotechnology Kumar 28 82001 2017 10.1088/1361-6528/aa564f Molecular assembly on two-dimensional materials 

  74. J. Phys. D Appl. Phys. Kratzer 52 383001 2019 10.1088/1361-6463/ab29cb Adsorption and epitaxial growth of small organic semiconductors on hexagonal boron nitride 

  75. Chem. Commun. Garcia 52 6677 2016 10.1039/C5CC10462A A C60-aryne building block: synthesis of a hybrid all-carbon nanostructure 

  76. Chem. Commun. Das 49 2013 2013 10.1039/c3cc38898k Decorating single layer graphene oxide with electron donor and acceptor molecules for the study of photoinduced electron transfer 

  77. Sci. Adv. Mirzayev 3 2017 10.1126/sciadv.1700176 Buckyball sandwiches 

  78. Mater. Today Proc. Ioni 3 S209 2016 10.1016/j.matpr.2016.02.035 Synthesis of graphene with noble metals nanoparticles on its surface 

  79. J. Phys. Chem. Lett. Yu 2 1113 2011 10.1021/jz200428y Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices 

  80. Chem. Mater. Chen 28 4300 2016 10.1021/acs.chemmater.6b01115 Templating C60 on MoS2 nanosheets for 2D hybrid van der Waals p-n nanoheterojunctions 

  81. ACS Omega Park 4 18423 2019 10.1021/acsomega.9b02691 Spontaneous formation of gold nanoparticles on graphene by galvanic reaction through graphene 

  82. ACS Nano Kim 9 5922 2015 10.1021/acsnano.5b00581 Structural and electrical investigation of C60-graphene vertical heterostructures 

  83. Adv. Sci. Nguyen 7 1902315 2020 10.1002/advs.201902315 Charge-transfer-controlled growth of organic semiconductor crystals on graphene 

  84. Cryst. Growth Des. Felix 16 6941 2016 10.1021/acs.cgd.6b01117 Microstructural analysis of perfluoropentacene films on graphene and graphite: interface-mediated alignment and island formation 

  85. J. Appl. Mech. Dong 80 40904 2013 10.1115/1.4024168 Evolution of Pt clusters on graphene induced by electron irradiation 

  86. Dalton Trans. Chai 43 982 2014 10.1039/C3DT52454J Fullerene modified C3N4 composites with enhanced photocatalytic activity under visible light irradiation 

  87. Chem. Commun. Barrejon 50 9053 2014 10.1039/C3CC49589B A photoresponsive graphene oxide-C60 conjugate 

  88. Catal. Sci. Technol. Sadjadi 5 942 2015 10.1039/C4CY00822G Feasibility study of the Mn-Na2WO4/SiO2 catalytic system for the oxidative coupling of methane in a fluidized-bed reactor 

  89. Adv. Mater. Rem?kar 17 911 2005 10.1002/adma.200400553 New composite MoS2-C60 crystals 

  90. Aerosol Sci. Technol. Jang 47 93 2013 10.1080/02786826.2012.728302 One-step synthesis of Pt-Nanoparticles-Laden graphene crumples by aerosol spray pyrolysis and evaluation of their electrocatalytic activity 

  91. Sci. Rep. Jo 6 33236 2016 10.1038/srep33236 One-step synthesis of Pt/graphene composites from Pt acid dissolved ethanol via microwave plasma spray pyrolysis 

  92. ChemElectroChem Hussain 5 2902 2018 10.1002/celc.201800582 Oxygen electroreduction on Pt nanoparticles deposited on reduced graphene oxide and N-doped reduced graphene oxide prepared by plasma-assisted synthesis in aqueous solution 

  93. J. Supercrit. Fluids Morere 120 7 2017 10.1016/j.supflu.2016.10.007 Supercritical fluid preparation of Pt, Ru and Ni/graphene nanocomposites and their application as selective catalysts in the partial hydrogenation of limonene 

  94. RSC Adv. Huang 5 49973 2015 10.1039/C5RA08670A Fabrication of reduced graphene oxide/metal (Cu, Ni, Co) nanoparticle hybrid composites via a facile thermal reduction method 

  95. J. Catal. Peng 286 22 2012 10.1016/j.jcat.2011.10.008 High-resolution in situ and ex situ TEM studies on graphene formation and growth on Pt nanoparticles 

  96. J. Colloid Interface Sci. Tung 539 315 2019 10.1016/j.jcis.2018.12.077 Magnetic iron oxide nanoparticles decorated graphene for chemoresistive gas sensing: the particle size effects 

  97. RSC Adv. Liu 5 73699 2015 10.1039/C5RA14857J 3D Fe3O4 nanoparticle/graphene aerogel for NO2 sensing at room temperature 

  98. J. Alloys Compd. Choi 688 527 2016 10.1016/j.jallcom.2016.07.236 Self-assembly of CeO2 nanostructures/reduced graphene oxide composite aerogels for efficient photocatalytic degradation of organic pollutants in water 

  99. J. Mater. Chem. A Rajendran 2 18480 2014 10.1039/C4TA03996C Dimensionally integrated nanoarchitectonics for a novel composite from 0D{,} 1D{,} and 2D nanomaterials: RGO/CNT/CeO2 ternary nanocomposites with electrochemical performance 

  100. ChemCatChem Zhao 11 6310 2019 10.1002/cctc.201901489 Constructing 0D FeP nanodots/2D g-C3N4 nanosheets heterojunction for highly improved photocatalytic hydrogen evolution 

  101. FlatChem Mohanty 9 15 2018 10.1016/j.flatc.2018.04.002 Few layer graphene as a template for Fe-based 2D nanoparticles 

  102. Sci. Rep. Tang 9 3653 2019 10.1038/s41598-019-40257-7 Chemically deposited palladium nanoparticles on graphene for hydrogen sensor applications 

  103. Electrochim. Acta Teran-Salgado 298 172 2019 10.1016/j.electacta.2018.12.057 Platinum nanoparticles supported on electrochemically oxidized and exfoliated graphite for the oxygen reduction reaction 

  104. RSC Adv. Biris 3 26391 2013 10.1039/c3ra44564j Catalytic one-step synthesis of Pt-decorated few-layer graphenes 

  105. Electrochim. Acta Pruneanu 139 386 2014 10.1016/j.electacta.2014.06.163 The study of adenine and guanine electrochemical oxidation using electrodes modified with graphene-platinum nanoparticles composites 

  106. Solid State Commun. Nakada 151 13 2011 10.1016/j.ssc.2010.10.036 Migration of adatom adsorption on graphene using DFT calculation 

  107. Chem. Commun. Yuk 49 11479 2013 10.1039/c3cc46545d In situ atomic imaging of coalescence of Au nanoparticles on graphene: rotation and grain boundary migration 

  108. Electrochim. Acta Naeim 282 137 2018 10.1016/j.electacta.2018.05.204 Ionic liquid/reduced graphene oxide/nickel-palladium nanoparticle hybrid synthesized for non-enzymatic electrochemical glucose sensing 

  109. Res. Chem. Intermed. Chen 44 7369 2018 10.1007/s11164-018-3561-3 Graphitic-C3N4 quantum dots decorated {001}-faceted TiO2 nanosheets as a 0D/2D composite with enhanced solar photocatalytic activity 

  110. Adv. Mater. Liu 29 1605646 2017 10.1002/adma.201605646 0D-2D quantum dot: metal dichalcogenide nanocomposite photocatalyst achieves efficient hydrogen generation 

  111. Nat. Commun. Sinha 11 1 2020 10.1038/s41467-020-14481-z Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene 

  112. Phys. Chem. Chem. Phys. Yin 15 12785 2013 10.1039/c3cp51901e Prospects for graphene-nanoparticle-based hybrid sensors 

  113. Adv. Mater. Ye 33 2101204 2021 10.1002/adma.202101204 Self-assembly of 0D-2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction 

  114. Mater. Today Zhang 36 83 2020 10.1016/j.mattod.2020.02.006 Self-assembly of 0D/2D homostructure for enhanced hydrogen evolution 

  115. ACS Appl. Mater. Interfaces Lv 10 6552 2018 10.1021/acsami.7b16878 Tunable nonvolatile memory behaviors of PCBM-MoS2 2D nanocomposites through surface deposition ratio control 

  116. ACS Appl. Mater. Interfaces Zhang 8 35138 2016 10.1021/acsami.6b09260 Hybrid 0D-2D nanoheterostructures: in situ growth of amorphous silver silicates dots on g-C3N4 nanosheets for full-spectrum photocatalysis 

  117. ChemistrySelect Xavier 4 11541 2019 10.1002/slct.201903314 Green synthesis of a metal-free 0D/2D heterojunction: a cost-effective approach 

  118. Int. J. Hydrogen Energy Guan 43 8698 2018 10.1016/j.ijhydene.2018.03.148 Hybridizing MoS2 and C60 via a van der Waals heterostructure toward synergistically enhanced visible light photocatalytic hydrogen production activity 

  119. Nat. Commun. Choe 10 4395 2019 10.1038/s41467-019-12320-4 Direct imaging of structural disordering and heterogeneous dynamics of fullerene molecular liquid 

  120. Chem. Mater. Hoon Lee 29 2341 2017 10.1021/acs.chemmater.6b05517 Chemical vapor-deposited hexagonal boron nitride as a scalable template for high-performance organic field-effect transistors 

  121. Nanoscale Chen 9 5615 2017 10.1039/C7NR01237C A facile mechanochemical route to a covalently bonded graphitic carbon nitride (g-C3N4) and fullerene hybrid toward enhanced visible light photocatalytic hydrogen production 

  122. Sustain. Energy Fuels. Collavini 2 2480 2018 10.1039/C8SE00254A Fullerenes: the stars of photovoltaics 

  123. Adv. Energy Mater. Liang 5 1402321 2015 10.1002/aenm.201402321 Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells 

  124. Adv. Funct. Mater. Zhong 2020 Role of PCBM in the suppression of hysteresis in perovskite solar cells 

  125. Adv. Mater. Interfaces Sun 5 1800408 2018 10.1002/admi.201800408 State-of-the-art electron-selective contacts in perovskite solar cells 

  126. Adv. Mater. Das 31 1802722 2019 10.1002/adma.201802722 The role of graphene and other 2D materials in solar photovoltaics 

  127. Mater. Today Energy You 11 128 2019 10.1016/j.mtener.2018.11.006 Two-dimensional materials in perovskite solar cells 

  128. Chem. Soc. Rev. Wang 48 4854 2019 10.1039/C9CS00254E The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells 

  129. Renew. Sustain. Energy Rev. Litvin 124 109774 2020 10.1016/j.rser.2020.109774 Carbon-based interlayers in perovskite solar cells 

  130. Mater. Today Balis 19 580 2016 10.1016/j.mattod.2016.03.018 Graphene and transition metal dichalcogenide nanosheets as charge transport layers for solution processed solar cells 

  131. Energy Storage Mater. Zhu 16 426 2019 10.1016/j.ensm.2018.06.023 Rational design of graphitic-inorganic Bi-layer artificial SEI for stable lithium metal anode 

  132. Appl. Nanosci. Hilal 8 1325 2018 10.1007/s13204-018-0818-5 Study of interface chemistry between the carrier-transporting layers and their influences on the stability and performance of organic solar cells 

  133. Adv. Energy Mater. Kakavelakis 7 1602120 2017 10.1002/aenm.201602120 Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer 

  134. Nat. Commun. Bi 8 15330 2017 10.1038/ncomms15330 Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells 

  135. Opt. Mater. (Amst) Nicasio-Collazo 98 109434 2019 10.1016/j.optmat.2019.109434 Functionalized and reduced graphene oxide as hole transport layer and for use in ternary organic solar cell 

  136. ACS Sustain. Chem. Eng. Zhang 6 8631 2018 10.1021/acssuschemeng.8b00938 Enhanced performance of planar perovskite solar cell by graphene quantum dot modification 

  137. Dyes Pigments Shin 170 107630 2019 10.1016/j.dyepig.2019.107630 Highly-flexible graphene transparent conductive electrode/perovskite solar cells with graphene quantum dots-doped PCBM electron transport layer 

  138. Nano Energy Yang 40 345 2017 10.1016/j.nanoen.2017.08.008 Efficient and highly light stable planar perovskite solar cells with graphene quantum dots doped PCBM electron transport layer 

  139. Nat. Energy Fu 2 16190 2016 10.1038/nenergy.2016.190 High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration 

  140. Nano Energy Huang 32 225 2017 10.1016/j.nanoen.2016.12.042 Graphene coupled with Pt cubic nanoparticles for high performance, air-stable graphene-silicon solar cells 

  141. Nano Lett. Wang 14 724 2014 10.1021/nl403997a Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells 

  142. Sci. Rep. Meyer 4 5380 2014 10.1038/srep05380 Metal oxide induced charge transfer doping and band Alignment of graphene electrodes for efficient organic light emitting diodes 

  143. Adv. Funct. Mater. Kwon 22 4724 2012 10.1002/adfm.201200997 Increased work function in few-layer graphene sheets via metal chloride doping 

  144. Adv. Funct. Mater. Bhosale 28 1803200 2018 10.1002/adfm.201803200 Functionalization of graphene oxide films with Au and MoOx nanoparticles as efficient p-contact electrodes for inverted planar perovskite solar cells 

  145. J. Mater. Sci. Mater. Electron. Xie 31 6248 2020 10.1007/s10854-020-03179-z Solution preparation of molybdenum oxide on graphene: a hole transport layer for efficient perovskite solar cells with a 1.12 V high open-circuit voltage 

  146. J. Mater. Chem. C. Liang 6 3815 2018 10.1039/C8TC00172C Recent advances in the fabrication of graphene-ZnO heterojunctions for optoelectronic device applications 

  147. RSC Adv. Chandrasekhar 7 28610 2017 10.1039/C7RA02036H Graphene/ZnO nanocomposite as an electron transport layer for perovskite solar cells; the effect of graphene concentration on photovoltaic performance 

  148. ACS Nano Xie 11 9176 2017 10.1021/acsnano.7b04070 Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells 

  149. ACS Appl. Mater. Interfaces Hong 12 2417 2020 10.1021/acsami.9b17705 Improved efficiency of perovskite solar cells using a nitrogen-doped graphene-oxide-treated tin oxide layer 

  150. J. Mater. Chem. A Tavakoli 7 679 2019 10.1039/C8TA10857A A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells 

  151. Nano Energy Benetti 62 781 2019 10.1016/j.nanoen.2019.05.084 Hole-extraction and photostability enhancement in highly efficient inverted perovskite solar cells through carbon dot-based hybrid material 

  152. Appl. Nanosci. Jawad 10 485 2020 10.1007/s13204-019-01134-x Effect of gold nanoparticles on transmittance and conductance of graphene oxide thin films and efficiency of perovskite solar cells 

  153. Adv. Mater. Shifa 31 1804828 2019 10.1002/adma.201804828 Heterostructures based on 2D materials: a versatile platform for efficient catalysis 

  154. Nat. Rev. Chem. Voiry 2 2018 10.1038/s41570-017-0105 Low-dimensional catalysts for hydrogen evolution and CO2 reduction 

  155. Mater. Horiz. Xia 1 379 2014 10.1039/C4MH00040D Recent progress on graphene-based hybrid electrocatalysts 

  156. J. Energy Chem. Tang 26 1077 2017 10.1016/j.jechem.2017.08.008 A review of nanocarbons in energy electrocatalysis: multifunctional substrates and highly active sites 

  157. Nanoscale Horiz. Wang 5 316 2020 10.1039/C9NH00533A Ultrafine Pt cluster and RuO2 heterojunction anode catalysts designed for ultra-low Pt-loading anion exchange membrane fuel cells 

  158. Science (80-.) Seh 355 2017 10.1126/science.aad4998 Combining theory and experiment in electrocatalysis: insights into materials design 

  159. Adv. Mater. Xie 25 3820 2013 10.1002/adma.201301207 Graphene-based materials for hydrogen generation from light-driven water splitting 

  160. Nanoscale Xie 7 13278 2015 10.1039/C5NR03338A Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering 

  161. Chem. Rev. Zhang 115 10307 2015 10.1021/acs.chemrev.5b00267 Waltzing with the versatile platform of graphene to synthesize composite photocatalysts 

  162. Angew. Chem. Int. Ed. Xiang 54 11350 2015 10.1002/anie.201411096 Graphene-based photocatalysts for solar-fuel generation 

  163. ACS Appl. Mater. Interfaces Su 12 24710 2020 10.1021/acsami.0c02415 High durability of Pt3Sn/graphene electrocatalysts toward the oxygen reduction reaction studied with in situ QEXAFS 

  164. Catal. Sci. Technol. Ojha 7 668 2017 10.1039/C6CY02406H Reduced graphene oxide and MoP composite as highly efficient and durable electrocatalyst for hydrogen evolution in both acidic and alkaline media 

  165. Adv. Energy Mater. Shifa 9 1902307 2019 10.1002/aenm.201902307 Confined catalysis: progress and prospects in energy conversion 

  166. Appl. Catal. B Environ. Huang 240 153 2019 10.1016/j.apcatb.2018.08.071 Megamerger in photocatalytic field: 2D g-C3N4 nanosheets serve as support of 0D nanomaterials for improving photocatalytic performance 

  167. Adv. Funct. Mater. Niu 22 4763 2012 10.1002/adfm.201200922 Graphene-like carbon nitride nanosheets for improved photocatalytic activities 

  168. Nat. Mater. Wang 8 76 2009 10.1038/nmat2317 A metal-free polymeric photocatalyst for hydrogen production from water under visible light 

  169. J. Environ. Chem. Eng. Acharya 8 103896 2020 A review on TiO2/g-C3N4 visible-light- responsive photocatalysts for sustainable energy generation and environmental remediation 

  170. ACS Appl. Mater. Interfaces Zeng 11 5651 2019 10.1021/acsami.8b20958 Sub-5 nm ultra-fine FeP nanodots as efficient Co-catalysts modified porous g-C3N4 for precious-metal-free photocatalytic hydrogen evolution under visible light 

  171. Energy Environ. Sci. Zhang 4 675 2011 10.1039/C0EE00418A Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis 

  172. Appl. Catal. B Environ. Zeng 233 26 2018 10.1016/j.apcatb.2018.03.102 Construction of network-like and flower-like 2H-MoSe2 nanostructures coupled with porous g-C3N4 for noble-metal-free photocatalytic H2 evolution under visible light 

  173. Appl. Surf. Sci. Wen 391 72 2017 10.1016/j.apsusc.2016.07.030 A review on g-C3N4 -based photocatalysts 

  174. Chem. Soc. Rev. Li 45 3145 2016 10.1039/C6CS00195E Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications 

  175. J. Colloid Interface Sci. Jiang 461 56 2016 10.1016/j.jcis.2015.08.076 Au/PtO nanoparticle-modified g-C3N4 for plasmon-enhanced photocatalytic hydrogen evolution under visible light 

  176. Nanoscale Wei 8 11034 2016 10.1039/C6NR01491G Facile in situ synthesis of plasmonic nanoparticles-decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution 

  177. Int. J. Hydrogen Energy Cao 38 1258 2013 10.1016/j.ijhydene.2012.10.116 In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation 

  178. J. Phys. Chem. C Ge 116 13708 2012 10.1021/jp3041692 Synthesis and efficient visible light photocatalytic hydrogen evolution of polymeric g-C3N4 coupled with CdS quantum dots 

  179. Appl. Catal. B Environ. Cao 147 940 2014 10.1016/j.apcatb.2013.10.029 Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts 

  180. Angew. Chem. Int. Ed. Hou 52 3621 2013 10.1002/anie.201210294 Layered nanojunctions for hydrogen-evolution catalysis 

  181. ACS Sustain. Chem. Eng. Wang 5 7878 2017 10.1021/acssuschemeng.7b01386 Facile synthesis of MoS 2/g-C3N4/GO ternary heterojunction with enhanced photocatalytic activity for water splitting 

  182. ChemSusChem Zou 11 1187 2018 10.1002/cssc.201800053 WS 2/graphitic carbon nitride heterojunction nanosheets decorated with CdS quantum dots for photocatalytic hydrogen production 

  183. ACS Appl. Mater. Interfaces Wen 9 14031 2017 10.1021/acsami.7b02701 Constructing multifunctional metallic Ni interface layers in the g-C3N4 nanosheets/amorphous NiS heterojunctions for efficient photocatalytic H2 generation 

  184. Nat. Nanotechnol. Mahmood 12 441 2017 10.1038/nnano.2016.304 An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction 

  185. J. Electrochem. Soc. Sheng 157 B1529 2010 10.1149/1.3483106 Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes 

  186. Adv. Mater. Li 28 2427 2016 10.1002/adma.201505281 Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution 

  187. J. Mater. Chem. A Darabdhara 3 20254 2015 10.1039/C5TA05730B Reduced graphene oxide nanosheets decorated with Au, Pd and Au-Pd bimetallic nanoparticles as highly efficient catalysts for electrochemical hydrogen generation 

  188. J. Power Sources Xu 285 393 2015 10.1016/j.jpowsour.2015.03.131 Platinum nanocuboids supported on reduced graphene oxide as efficient electrocatalyst for the hydrogen evolution reaction 

  189. Int. J. Hydrogen Energy Yan 43 3369 2018 10.1016/j.ijhydene.2017.06.083 Three-dimensional reduced graphene oxide-Mn3O4 nanosheet hybrid decorated with palladium nanoparticles for highly efficient hydrogen evolution 

  190. Int. J. Hydrogen Energy Ghasemi 40 16184 2015 10.1016/j.ijhydene.2015.09.114 Palladium nanoparticles supported on graphene as an efficient electrocatalyst for hydrogen evolution reaction 

  191. Chem. Commun. Shiraishi 50 15255 2014 10.1039/C4CC06960A Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light 

  192. J. Mater. Chem. A Peng 5 18261 2017 10.1039/C7TA03826G Hydrogen evolution reaction catalyzed by ruthenium ion-complexed graphitic carbon nitride nanosheets 

  193. Nat. Commun. Cheng 7 13638 2016 10.1038/ncomms13638 Platinum single-atom and cluster catalysis of the hydrogen evolution reaction 

  194. Angew. Chem. Int. Ed. Zhu 56 2064 2017 10.1002/anie.201612315 Au/La2Ti2O7 nanostructures sensitized with black phosphorus for plasmon-enhanced photocatalytic hydrogen production in visible and near-infrared light 

  195. Angew. Chem. Int. Ed. Oshima 54 2698 2015 10.1002/anie.201411494 Intercalation of highly dispersed metal nanoclusters into a layered metal oxide for photocatalytic overall water splitting 

  196. J. Mater. Chem. A Xin 3 8659 2015 10.1039/C5TA00759C Gold-palladium bimetallic nanoalloy decorated ultrathin 2D TiO2 nanosheets as efficient photocatalysts with high hydrogen evolution activity 

  197. J. Phys. Chem. Lett. Vesborg 6 951 2015 10.1021/acs.jpclett.5b00306 Recent development in hydrogen evolution reaction catalysts and their practical implementation 

  198. Angew. Chem. Int. Ed. Popczun 53 5427 2014 10.1002/anie.201402646 Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles 

  199. Angew. Chem. Int. Ed. Kibsgaard 53 14433 2014 10.1002/anie.201408222 Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction 

  200. J. Am. Chem. Soc. Popczun 135 9267 2013 10.1021/ja403440e Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction 

  201. ACS Appl. Energy Mater. Kim 2 8649 2019 10.1021/acsaem.9b01599 Biomass-derived nickel phosphide nanoparticles as a robust catalyst for hydrogen production by catalytic decomposition of C2H2 or dry reforming of CH4 

  202. ACS Sustain. Chem. Eng. Li 6 10252 2018 10.1021/acssuschemeng.8b01575 Reduced graphene oxide-supported MoP@P-doped porous carbon nano-octahedrons as high-performance electrocatalysts for hydrogen evolution 

  203. J. Am. Chem. Soc. Chung 139 6669 2017 10.1021/jacs.7b01530 Large-scale synthesis of carbon-shell-coated FeP nanoparticles for robust hydrogen evolution reaction electrocatalyst 

  204. Appl. Catal. B Environ. Ren 263 118352 2020 10.1016/j.apcatb.2019.118352 Molybdenum-based nanoparticles (Mo2C, MoP and MoS2) coupled heteroatoms-doped carbon nanosheets for efficient hydrogen evolution reaction 

  205. ChemElectroChem Kan 8 539 2021 10.1002/celc.202001501 Tuning overall water splitting on an electrodeposited NiCoFeP films 

  206. J. Am. Chem. Soc. Hinnemann 127 5308 2005 10.1021/ja0504690 Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution 

  207. Science (80-.) Jaramillo 317 100 2007 10.1126/science.1141483 Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts 

  208. Adv. Mater. Fu 33 1907818 2021 10.1002/adma.201907818 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis 

  209. ACS Sustain. Chem. Eng. Bayat 6 8374 2018 10.1021/acssuschemeng.8b00441 Vertically aligned MoS2 quantum dots/nanoflakes heterostructure: facile deposition with excellent performance toward hydrogen evolution reaction 

  210. J. Am. Chem. Soc. Li 133 7296 2011 10.1021/ja201269b MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction 

  211. ACS Appl. Mater. Interfaces Benson 7 14113 2015 10.1021/acsami.5b03399 Electrocatalytic hydrogen evolution reaction on edges of a few layer molybdenum disulfide nanodots 

  212. Adv. Funct. Mater. Liao 23 5326 2013 10.1002/adfm.201300318 MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution 

  213. RSC Adv. Heydari-Bafrooei 6 95979 2016 10.1039/C6RA21610B Synergetic effect of CoNPs and graphene as cocatalysts for enhanced electrocatalytic hydrogen evolution activity of MoS 2 

  214. ACS Sustain. Chem. Eng. Du 6 15471 2018 10.1021/acssuschemeng.8b03929 In situ engineering MoS2 NDs/VS2 lamellar heterostructure for enhanced electrocatalytic hydrogen evolution 

  215. J. Colloid Interface Sci. Kanda 354 607 2011 10.1016/j.jcis.2010.11.007 Facile synthesis and catalytic activity of MoS2/TiO2 by a photodeposition-based technique and its oxidized derivative MoO3/TiO2 with a unique photochromism 

  216. New J. Chem. Wang 42 910 2018 10.1039/C7NJ03483K In situ ion exchange synthesis of MoS 2/g-C3N4 heterojunctions for highly efficient hydrogen production 

  217. ACS Nano Yang 8 6979 2014 10.1021/nn501807y Optical properties of metal-molybdenum disulfide hybrid nanosheets and their application for enhanced photocatalytic hydrogen evolution 

  218. J. Am. Chem. Soc. Xiang 134 6575 2012 10.1021/ja302846n Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles 

  219. ACS Nano Chang 8 7078 2014 10.1021/nn5019945 MoS 2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation 

  220. Dalton Trans. Guan 47 6800 2018 10.1039/C8DT00946E Constructing a ZnIn2S4 nanoparticle/MoS2-RGO nanosheet 0D/2D heterojunction for significantly enhanced visible-light photocatalytic H2 production 

  221. J. Mater. Chem. Zhang 20 2801 2010 10.1039/b917240h Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting 

  222. Nat. Commun. Deng 8 14430 2017 10.1038/ncomms14430 Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production 

  223. Nat. Commun. Luo 9 2120 2018 10.1038/s41467-018-04501-4 Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution 

  224. Nat. Mater. Li 15 48 2016 10.1038/nmat4465 Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies 

  225. ACS Nano Robertson 10 10227 2016 10.1021/acsnano.6b05674 Atomic structure and spectroscopy of single metal (Cr, V) substitutional dopants in monolayer MoS 2 

  226. Sci. Adv. Miao 1 2015 10.1126/sciadv.1500259 Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte 

  227. J. Am. Chem. Soc. Shi 139 15479 2017 10.1021/jacs.7b08881 Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction 

  228. Electrochim. Acta Liu 260 24 2018 10.1016/j.electacta.2017.11.080 Active basal plane catalytic activity and conductivity in Zn doped MoS2 nanosheets for efficient hydrogen evolution 

  229. Chem. Commun. Chen 49 8896 2013 10.1039/c3cc44076a Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts 

  230. Energy Environ. Sci. Chen 6 943 2013 10.1039/c2ee23891h Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production 

  231. ACS Catal. Cui 4 2658 2014 10.1021/cs5005294 Mo2C nanoparticles decorated graphitic carbon sheets: biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation 

  232. Chem. Soc. Rev. Shi 45 1529 2016 10.1039/C5CS00434A Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction 

  233. J. Am. Chem. Soc. Zhang 138 14686 2016 10.1021/jacs.6b08491 Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting 

  234. ACS Energy Lett. Liu 2 745 2017 10.1021/acsenergylett.7b00111 P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution 

  235. Langmuir Li 36 1916 2020 10.1021/acs.langmuir.9b03810 Synthesis of an ultrafine CoP nanocrystal/graphene sandwiched structure for efficient overall water splitting 

  236. ChemSusChem Lv 2020 10.1002/cssc.202000566 Simple 2D/0D CoP integration in a metal-organic framework-derived bifunctional electrocatalyst for efficient overall water splitting 

  237. J. Mater. Chem. A Han 3 1941 2015 10.1039/C4TA06071G A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: high performance for electrocatalytic hydrogen production from pH 0-14 

  238. Adv. Funct. Mater. Li 26 6785 2016 10.1002/adfm.201601420 Mechanistic insights on ternary Ni 2? x Co x P for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting 

  239. ChemElectroChem Huang 3 719 2016 10.1002/celc.201600001 Strongly coupled architectures of cobalt phosphide nanoparticles assembled on graphene as bifunctional electrocatalysts for water splitting 

  240. Chem. Mater. Suryawanshi 33 234 2021 10.1021/acs.chemmater.0c03543 Colloidal Ni2P nanocrystals encapsulated in heteroatom-doped graphene nanosheets: a synergy of 0D@2D heterostructure toward overall water splitting 

  241. Nano Lett. Zhuang 16 4691 2016 10.1021/acs.nanolett.6b02203 Polymer-embedded fabrication of Co2P nanoparticles encapsulated in N,P-doped graphene for hydrogen generation 

  242. Small Ma 14 1702895 2018 10.1002/smll.201702895 Polyaniline derived N-doped carbon-coated cobalt phosphide nanoparticles deposited on N-doped graphene as an efficient electrocatalyst for hydrogen evolution reaction 

  243. J. Power Sources Pan 297 45 2015 10.1016/j.jpowsour.2015.07.077 Nickel phosphide nanoparticles-nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity 

  244. Angew. Chem. Int. Ed. Zheng 54 52 2015 10.1002/anie.201407031 Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory 

  245. Nano Lett. Yan 15 2015 10.1021/acs.nanolett.5b02205 Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction 

  246. ACS Appl. Mater. Interfaces Fei 7 8083 2015 10.1021/acsami.5b00652 Cobalt nanoparticles embedded in nitrogen-doped carbon for the hydrogen evolution reaction 

  247. ACS Nano Zhang 10 684 2016 10.1021/acsnano.5b05728 Active sites implanted carbon cages in core-shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction 

  248. J. Mater. Chem. A Hou 3 15962 2015 10.1039/C5TA03905C Flexible and porous catalyst electrodes constructed by Co nanoparticles@nitrogen-doped graphene films for highly efficient hydrogen evolution 

  249. J. Am. Chem. Soc. Jin 137 2688 2015 10.1021/ja5127165 In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution 

  250. Chem. Mater. Zhou 27 2026 2015 10.1021/acs.chemmater.5b00331 N-doped carbon-wrapped cobalt nanoparticles on N-doped graphene nanosheets for high-efficiency hydrogen production 

  251. J. Mater. Chem. A Wang 2 20067 2014 10.1039/C4TA04337E Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis 

  252. Npj 2D Mater. Appl. Bhat 5 61 2021 10.1038/s41699-021-00239-8 Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications 

  253. J. Colloid Interface Sci. Shinde 602 232 2021 10.1016/j.jcis.2021.06.007 Spinel NiFe2O4 nanoparticles decorated 2D Ti3C2 MXene sheets for efficient water splitting: experiments and theories 

  254. Angew. Chem. Int. Ed. Ito 54 2131 2015 10.1002/anie.201410050 High catalytic activity of nitrogen and sulfur Co-doped nanoporous graphene in the hydrogen evolution reaction 

  255. Adv. Funct. Mater. Zhao 28 1803291 2018 10.1002/adfm.201803291 Heterostructures for electrochemical hydrogen evolution reaction: a review 

  256. Nat. Energy Jiao 1 16130 2016 10.1038/nenergy.2016.130 Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene 

  257. ACS Nano Zheng 8 5290 2014 10.1021/nn501434a Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution 

  258. ACS Nano Duan 9 931 2015 10.1021/nn506701x Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution 

  259. Nat. Commun. Zheng 5 3783 2014 10.1038/ncomms4783 Hydrogen evolution by a metal-free electrocatalyst 

  260. Chem. Rev. Winter 104 4245 2004 10.1021/cr020730k What are batteries, fuel cells, and supercapacitors? 

  261. J. Power Sources Li 226 223 2013 10.1016/j.jpowsour.2012.10.061 Review and advances of direct methanol fuel cells (DMFCs) part I: design, fabrication, and testing with high concentration methanol solutions 

  262. Nature Debe 486 43 2012 10.1038/nature11115 Electrocatalyst approaches and challenges for automotive fuel cells 

  263. J. Power Sources Zhang 194 588 2009 10.1016/j.jpowsour.2009.06.073 A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells 

  264. Adv. Mater. Chung 30 1704123 2018 10.1002/adma.201704123 Highly durable and active Pt-based nanoscale design for fuel-cell oxygen-reduction electrocatalysts 

  265. Dhathathreyan 569 2017 Nanotechnol. Energy Sustain. Nanomaterials for fuel cell technology 

  266. Chem. Rev. Dai 115 4823 2015 10.1021/cr5003563 Metal-free catalysts for oxygen reduction reaction 

  267. ACS Appl. Energy Mater. Kim 4 1286 2021 10.1021/acsaem.0c02533 Platinum encapsulated within a bacterial nanocellulosic-graphene nanosandwich as a durable thin-film fuel cell catalyst 

  268. Ionics Munjewar 23 1 2017 10.1007/s11581-016-1864-1 A comprehensive review on recent material development of passive direct methanol fuel cell 

  269. J. Power Sources Liu 155 95 2006 10.1016/j.jpowsour.2006.01.030 A review of anode catalysis in the direct methanol fuel cell 

  270. J. Energy Chem. Gong 27 1618 2018 10.1016/j.jechem.2018.01.029 Recent development of methanol electrooxidation catalysts for direct methanol fuel cell 

  271. Appl. Catal. B Environ. Serov 90 313 2009 10.1016/j.apcatb.2009.03.030 Review of non-platinum anode catalysts for DMFC and PEMFC application 

  272. ACS Appl. Energy Mater. Serra-Maia 1 3255 2018 10.1021/acsaem.8b00474 Abundance and speciation of surface oxygen on nanosized platinum catalysts and effect on catalytic activity 

  273. J. Mater. Chem. A Ali 7 22189 2019 10.1039/C9TA06088J Recent advances in graphene-based platinum and palladium electrocatalysts for the methanol oxidation reaction 

  274. Nanoscale Res. Lett. Ramli 13 410 2018 10.1186/s11671-018-2799-4 Platinum-based catalysts on various carbon supports and conducting polymers for direct methanol fuel cell applications: a review 

  275. Adv. Mater. Huang 26 5160 2014 10.1002/adma.201401877 Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts 

  276. J. Power Sources Kakaei 225 356 2013 10.1016/j.jpowsour.2012.10.003 A new method for manufacturing graphene and electrochemical characteristic of graphene-supported Pt nanoparticles in methanol oxidation 

  277. J. Mater. Chem. Huang 22 22533 2012 10.1039/c2jm33727d Pd nanoparticles supported on low-defect graphene sheets: for use as high-performance electrocatalysts for formic acid and methanol oxidation 

  278. Phys. Chem. Chem. Phys. Hu 13 4083 2011 10.1039/c0cp01998d Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation 

  279. Carbon N.Y. Dong 48 781 2010 10.1016/j.carbon.2009.10.027 Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation 

  280. ACS Nano Guo 4 547 2010 10.1021/nn9014483 Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation 

  281. J. Power Sources Ojani 264 76 2014 10.1016/j.jpowsour.2014.03.147 Pt-Co nanostructures electrodeposited on graphene nanosheets for methanol electrooxidation 

  282. Appl. Catal. B Environ. Hu 111-112 208 2012 10.1016/j.apcatb.2011.10.001 Effects of structure, composition, and carbon support properties on the electrocatalytic activity of Pt-Ni-graphene nanocatalysts for the methanol oxidation 

  283. J. Power Sources Li 263 13 2014 10.1016/j.jpowsour.2014.04.021 A green method to prepare Pd-Ag nanoparticles supported on reduced graphene oxide and their electrochemical catalysis of methanol and ethanol oxidation 

  284. Nanoscale Lu 6 3309 2014 10.1039/C3NR06186H Graphene nanosheet-tailored PtPd concave nanocubes with enhanced electrocatalytic activity and durability for methanol oxidation 

  285. Carbon N.Y. Xiong 52 181 2013 10.1016/j.carbon.2012.09.019 The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation 

  286. J. Phys. Chem. C Sharma 114 19459 2010 10.1021/jp107872z Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol 

  287. J. Energy Chem. Berghian-Grosan 40 81 2020 10.1016/j.jechem.2019.03.003 Platinum nanoparticles coated by graphene layers: a low-metal loading catalyst for methanol oxidation in alkaline media 

  288. Nat. Commun. Huang 6 10035 2015 10.1038/ncomms10035 Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene 

  289. RSC Adv. Atar 5 26402 2015 10.1039/C5RA03735B Magnetic iron oxide and iron oxide@gold nanoparticle anchored nitrogen and sulfur-functionalized reduced graphene oxide electrocatalyst for methanol oxidation 

  290. Nanoscale Das 6 10657 2014 10.1039/C4NR02370F Reduced graphene oxide (RGO)-supported NiCo2O4 nanoparticles: an electrocatalyst for methanol oxidation 

  291. Angew. Chem. Int. Ed. Tong 56 7121 2017 10.1002/anie.201702430 A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: cobalt oxide nanoparticles strongly coupled to B,N-decorated graphene 

  292. J. Mater. Chem. A Sun 3 15882 2015 10.1039/C5TA01613D General synthesis of binary PtM and ternary PtM1M2 alloy nanoparticles on graphene as advanced electrocatalysts for methanol oxidation 

  293. J. Phys. Chem. Lett. Kongkanand 7 1127 2016 10.1021/acs.jpclett.6b00216 The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells 

  294. Energy Environ. Sci. Chen 4 3167 2011 10.1039/c0ee00558d A review on non-precious metal electrocatalysts for PEM fuel cells 

  295. Carbon N.Y. Perivoliotis 118 493 2017 10.1016/j.carbon.2017.03.073 Recent advancements in metal-based hybrid electrocatalysts supported on graphene and related 2D materials for the oxygen reduction reaction 

  296. Appl. Catal. B Environ. Kameya 189 219 2016 10.1016/j.apcatb.2016.02.049 Stability of platinum nanoparticles supported on surface-treated carbon black 

  297. J. Chem. Technol. Biotechnol. Hu 90 2132 2015 10.1002/jctb.4797 Multifunctional graphene-based nanostructures for efficient electrocatalytic reduction of oxygen 

  298. J. Power Sources Sharma 208 96 2012 10.1016/j.jpowsour.2012.02.011 Support materials for PEMFC and DMFC electrocatalysts-a review 

  299. ACS Catal. Castanheira 2184 2015 10.1021/cs501973j Carbon corrosion in proton-exchange membrane fuel cells: effect of the carbon structure, the degradation protocol, and the gas atmosphere 

  300. J. Am. Chem. Soc. Li 134 12326 2012 10.1021/ja3031449 Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite 

  301. Mater. Des. Zhang 96 323 2016 10.1016/j.matdes.2016.02.030 Facile synthesis of Pt nanoparticles loaded porous graphene towards oxygen reduction reaction 

  302. Sci. Rep. Wang 3 2580 2013 10.1038/srep02580 A unique platinum-graphene hybrid structure for high activity and durability in oxygen reduction reaction 

  303. Nano Res. Bai 8 2789 2015 10.1007/s12274-015-0770-6 Etching approach to hybrid structures of PtPd nanocages and graphene for efficient oxygen reduction reaction catalysts 

  304. ACS Appl. Mater. Interfaces Li 6 10549 2014 10.1021/am502148z Facile synthesis of PdPt@Pt nanorings supported on reduced graphene oxide with enhanced electrocatalytic properties 

  305. Carbon N.Y. Rao 49 931 2011 10.1016/j.carbon.2010.10.056 Synthesis and electrocatalytic oxygen reduction activity of graphene-supported Pt3Co and Pt3Cr alloy nanoparticles 

  306. Nat. Mater. Stamenkovic 6 241 2007 10.1038/nmat1840 Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces 

  307. Adv. Mater. Choi 28 7115 2016 10.1002/adma.201600469 Low-temperature chemical vapor deposition synthesis of Pt-Co alloyed nanoparticles with enhanced oxygen reduction reaction catalysis 

  308. Chem. Mater. Patrick 25 530 2013 10.1021/cm3029164 Atomic structure and composition of “Pt3Co” nanocatalysts in fuel cells: an aberration-corrected STEM HAADF study 

  309. J. Am. Chem. Soc. Guo 134 2492 2012 10.1021/ja2104334 FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction 

  310. ACS Appl. Mater. Interfaces Zheng 7 5347 2015 10.1021/acsami.5b01541 Component-controlled synthesis and assembly of Cu-Pd nanocrystals on graphene for oxygen reduction reaction 

  311. J. Power Sources Lv 269 104 2014 10.1016/j.jpowsour.2014.07.036 One-pot synthesis of monodisperse palladium-copper nanocrystals supported on reduced graphene oxide nanosheets with improved catalytic activity and methanol tolerance for oxygen reduction reaction 

  312. Electrochim. Acta Lv 136 521 2014 10.1016/j.electacta.2014.05.138 Monodisperse Au-Pd bimetallic alloyed nanoparticles supported on reduced graphene oxide with enhanced electrocatalytic activity towards oxygen reduction reaction 

  313. Int. J. Hydrogen Energy Suh 41 12983 2016 10.1016/j.ijhydene.2016.04.090 Graphene supported Pt-Ni nanoparticles for oxygen reduction reaction in acidic electrolyte 

  314. Chem. - A Eur. J. Perivoliotis 25 11105 2019 10.1002/chem.201901588 Core-shell Pd@M (M=Ni, Cu, Co) nanoparticles/graphene ensembles with high mass electrocatalytic activity toward the oxygen reduction reaction 

  315. Chem. Commun. Yan 48 1892 2012 10.1039/c2cc17537a Cuprous oxide nanoparticles dispersed on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction 

  316. Catal. Sci. Technol. Li 8 5325 2018 10.1039/C8CY01328D Porous graphene doped with Fe/N/S and incorporating Fe3O4 nanoparticles for efficient oxygen reduction 

  317. Sci. Rep. Chen 5 10389 2015 10.1038/srep10389 Nitrogen-doped graphene-supported transition-metals carbide electrocatalysts for oxygen reduction reaction 

  318. Angew. Chem. Int. Ed. Wang 50 10969 2011 10.1002/anie.201104004 Co1?xS-Graphene hybrid: a high-performance metal chalcogenide electrocatalyst for oxygen reduction 

  319. Electrochim. Acta Wen 296 830 2019 10.1016/j.electacta.2018.11.129 Co/CoOx nanoparticles inlaid onto nitrogen-doped carbon-graphene as a trifunctional electrocatalyst 

  320. Angew. Chem. Int. Ed. Guo 51 11770 2012 10.1002/anie.201206152 Co/CoO nanoparticles assembled on graphene for electrochemical reduction of oxygen 

  321. ACS Sustain. Chem. Eng. Niu 6 3556 2018 10.1021/acssuschemeng.7b03888 One-Pot synthesis of Co/CoFe2O4 nanoparticles supported on N-doped graphene for efficient bifunctional oxygen electrocatalysis 

  322. J. Am. Chem. Soc. Liang 134 3517 2012 10.1021/ja210924t Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts 

  323. Int. J. Hydrogen Energy Zhang 44 1610 2019 10.1016/j.ijhydene.2018.11.120 Spinel CoFe2O4 supported by three dimensional graphene as high-performance bi-functional electrocatalysts for oxygen reduction and evolution reaction 

  324. J. Power Sources Ghanbarlou 273 981 2015 10.1016/j.jpowsour.2014.10.001 Non-precious metal nanoparticles supported on nitrogen-doped graphene as a promising catalyst for oxygen reduction reaction: synthesis, characterization and electrocatalytic performance 

  325. Nat. Mater. Liang 10 780 2011 10.1038/nmat3087 Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction 

  326. Adv. Mater. Singh 31 1804297 2019 10.1002/adma.201804297 Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials 

  327. Science (80-.) Guo 351 361 2016 10.1126/science.aad0832 Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts 

  328. J. Am. Chem. Soc. Lu 136 11687 2014 10.1021/ja5041094 Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts 

  329. ACS Catal. Liu 2 456 2012 10.1021/cs200657w Synthesis of nanosize tungsten oxide and its evaluation as an electrocatalyst support for oxygen reduction in acid media 

  330. Adv. Funct. Mater. Yu 2000570 2020 10.1002/adfm.202000570 Novel 2D transition-metal carbides: ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction 

  331. Ultrason. Sonochem. Zuo 35 681 2017 10.1016/j.ultsonch.2016.02.006 A facile sonochemical route for the synthesis of MoS2/Pd composites for highly efficient oxygen reduction reaction 

  332. ACS Appl. Mater. Interfaces Ramakrishnan 11 12504 2019 10.1021/acsami.9b00192 Ultrafine Pt nanoparticles stabilized by MoS 2/N-doped reduced graphene oxide as a durable electrocatalyst for alcohol oxidation and oxygen reduction reactions 

  333. RSC Adv. Lee 6 47468 2016 10.1039/C6RA07064G Epitaxial growth of Pd nanoparticles on molybdenum disulfide by sonochemistry and its effects on electrocatalysis 

  334. Adv. Mater. Wen 20 743 2008 10.1002/adma.200701578 Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells 

  335. ACS Appl. Mater. Interfaces Wu 12 10359 2020 10.1021/acsami.9b20781 Encapsulating Pt nanoparticles inside a derived two-dimensional metal-organic frameworks for the enhancement of catalytic activity 

  336. Nano Res. Sun 11 3490 2018 10.1007/s12274-018-2029-5 Pt@h-BN core-shell fuel cell electrocatalysts with electrocatalysis confined under outer shells 

  337. Int. J. Hydrogen Energy Chen 42 29192 2017 10.1016/j.ijhydene.2017.10.078 Platinum nanoparticles encapsulated in nitrogen-doped graphene quantum dots: enhanced electrocatalytic reduction of oxygen by nitrogen dopants 

  338. Mater. Adv. Phan 2 322 2021 10.1039/D0MA00718H N-Doped few-layer graphene encapsulated Pt-based bimetallic nanoparticles via solution plasma as an efficient oxygen catalyst for the oxygen reduction reaction 

  339. ACS Sustain. Chem. Eng. Wu 7 1137 2019 10.1021/acssuschemeng.8b04797 Biomass-derived multilayer-graphene-encapsulated cobalt nanoparticles as efficient electrocatalyst for versatile renewable energy applications 

  340. J. Colloid Interface Sci. Niu 552 744 2019 10.1016/j.jcis.2019.05.099 Graphene-encapsulated cobalt nanoparticles embedded in porous nitrogen-doped graphitic carbon nanosheets as efficient electrocatalysts for oxygen reduction reaction 

  341. Adv. Energy Mater. Hu 8 1702476 2018 10.1002/aenm.201702476 Graphene layers-wrapped Fe/Fe5C2 nanoparticles supported on N-doped graphene nanosheets for highly efficient oxygen reduction 

  342. ACS Appl. Mater. Interfaces Zhao 10 28509 2018 10.1021/acsami.8b06153 Graphite-wrapped Fe core-shell nanoparticles anchored on graphene as pH-universal electrocatalyst for oxygen reduction reaction 

  343. ACS Appl. Mater. Interfaces Chuong 10 24523 2018 10.1021/acsami.8b06485 Hierarchical heterostructures of ultrasmall Fe2O3-encapsulated MoS2/N-graphene as an effective catalyst for oxygen reduction reaction 

  344. Carbon N.Y. Gautam 137 358 2018 10.1016/j.carbon.2018.05.042 Highly efficient electrocatalyst of N-doped graphene-encapsulated cobalt-iron carbides towards oxygen reduction reaction 

  345. Angew. Chem. Int. Ed. Deng 54 2100 2015 10.1002/anie.201409524 Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction 

  346. ACS Sustain. Chem. Eng. Huang 7 16511 2019 10.1021/acssuschemeng.9b03736 Silver nanoparticles encapsulated in an N-doped porous carbon matrix as high-active catalysts toward oxygen reduction reaction via electron transfer to outer graphene shells 

  347. Energy Environ. Sci. Sharma 12 2200 2019 10.1039/C9EE00381A Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction 

  348. ACS Appl. Mater. Interfaces Thanh 10 4672 2018 10.1021/acsami.7b16294 CuAg@Ag core-shell nanostructure encapsulated by N-doped graphene as a high-performance catalyst for oxygen reduction reaction 

  349. J. Am. Chem. Soc. Jiao 136 4394 2014 10.1021/ja500432h Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance 

  350. ChemSusChem Shao 12 2133 2019 10.1002/cssc.201900060 Progress in nonmetal-doped graphene electrocatalysts for the oxygen reduction reaction 

  351. ACS Nano Qu 4 1321 2010 10.1021/nn901850u Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells 

  352. Carbon N.Y. Bian 162 66 2020 10.1016/j.carbon.2020.01.110 Nitrogen-rich holey graphene for efficient oxygen reduction reaction 

  353. ACS Catal. Gong 5 920 2015 10.1021/cs501632y Nitrogen- and phosphorus-doped biocarbon with enhanced electrocatalytic activity for oxygen reduction 

  354. Nano Lett. Lin 15 7408 2015 10.1021/acs.nanolett.5b02831 Structural and chemical dynamics of pyridinic-nitrogen defects in graphene 

  355. Chem. Commun. Tao 52 2764 2016 10.1039/C5CC09173J Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction 

  356. ACS Nano Kim 9 2015 10.1021/acsnano.5b02730 formation of Klein edge doublets from graphene monolayers 

  357. Nat. Commun. He 5 3040 2014 10.1038/ncomms4040 Hydrogen-free graphene edges 

  358. Angew. Chem. Liu 127 6941 2015 10.1002/ange.201502396 High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon 

  359. Angew. Chem. Int. Ed. Shen 53 10804 2014 10.1002/anie.201406695 Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane 

  360. Chem. Mater. Kim 31 3967 2019 10.1021/acs.chemmater.9b00210 Carbon defect characterization of nitrogen-doped reduced graphene oxide electrocatalysts for the two-electron oxygen reduction reaction 

  361. J. Am. Chem. Soc. Bowling 111 1217 1989 10.1021/ja00186a008 Activation of highly ordered pyrolytic graphite for heterogeneous electron transfer: relationship between electrochemical performance and carbon microstructure 

  362. Nat. Catal. Lu 1 156 2018 10.1038/s41929-017-0017-x High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials 

  363. Nat. Catal. Kim 1 282 2018 10.1038/s41929-018-0044-2 Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts 

  364. Nano Energy Han 66 104088 2019 10.1016/j.nanoen.2019.104088 High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction 

  365. Energy Environ. Sci. Wu 9 3736 2016 10.1039/C6EE01867J Highly doped and exposed Cu( i )-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries 

  366. ACS Catal. Muthukrishnan 5 5194 2015 10.1021/acscatal.5b00397 Kinetic approach to investigate the mechanistic pathways of oxygen reduction reaction on Fe-containing N-doped carbon catalysts 

  367. Nano Energy Chen 32 353 2017 10.1016/j.nanoen.2016.12.056 Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction 

  368. J. Am. Chem. Soc. Han 139 17269 2017 10.1021/jacs.7b10194 Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction 

  369. ACS Nano Zhang 11 6930 2017 10.1021/acsnano.7b02148 Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium 

  370. Chem. Mater. Byon 23 3421 2011 10.1021/cm2000649 Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid 

  371. Proc. Natl. Acad. Sci. U.S.A. Yang 115 6626 2018 10.1073/pnas.1800771115 Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction 

  372. Mater. Today Adv. Du 6 100071 2020 10.1016/j.mtadv.2020.100071 CO2 transformation to multicarbon products by photocatalysis and electrocatalysis 

  373. J. CO2 Util. Karamian 16 194 2016 10.1016/j.jcou.2016.07.004 On the general mechanism of photocatalytic reduction of CO2 

  374. Mater. Today Chem. Sorcar 16 100264 2020 10.1016/j.mtchem.2020.100264 A review of recent progress in gas phase CO2 reduction and suggestions on future advancement 

  375. ACS Catal. Albero 10 5734 2020 10.1021/acscatal.0c00478 Photocatalytic CO2 reduction to C2+ products 

  376. Phys. Rev. B Tan 84 155418 2011 10.1103/PhysRevB.84.155418 CO2 dissociation activated through electron attachment on the reduced rutile TiO2 (110)-1 × 1 surface 

  377. Angew. Chem. Int. Ed. Habisreutinger 52 7372 2013 10.1002/anie.201207199 Photocatalytic reduction of CO2 on TiO2 and other semiconductors 

  378. Nat. Energy Wu 4 957 2019 10.1038/s41560-019-0490-3 Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol 

  379. Appl. Surf. Sci. Low 392 658 2017 10.1016/j.apsusc.2016.09.093 Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review 

  380. Catal. Today Ali 335 39 2019 10.1016/j.cattod.2018.12.003 Development of graphene based photocatalysts for CO2 reduction to C1 chemicals: a brief overview 

  381. Appl. Surf. Sci. Ye 358 15 2015 10.1016/j.apsusc.2015.08.173 A review on g-C3N4 for photocatalytic water splitting and CO2 reduction 

  382. J. Phys. Chem. Lett. Low 6 4244 2015 10.1021/acs.jpclett.5b01610 Graphene-based photocatalysts for CO2 reduction to solar fuel 

  383. Nano Lett. Shown 14 6097 2014 10.1021/nl503609v Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide 

  384. Nat. Commun. Ju 8 944 2017 10.1038/s41467-017-01035-z Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2 

  385. Chem. Soc. Rev. Yang 43 8240 2014 10.1039/C4CS00213J Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? 

  386. J. Phys. Chem. Lett. Liang 3 1760 2012 10.1021/jz300491s Effect of dimensionality on the photocatalytic behavior of carbon-titania nanosheet composites: charge transfer at nanomaterial interfaces 

  387. RSC Adv. Lv 3 1753 2013 10.1039/c2ra21283h Photocatalytic reduction of CO2 with H2O over a graphene-modified NiOx-Ta2O5 composite photocatalyst: coupling yields of methanol and hydrogen 

  388. Nanoscale Horiz. Yang 1 185 2016 10.1039/C5NH00113G Photocatalytic conversion of CO2 over graphene-based composites: current status and future perspective 

  389. J. Mater. Chem. A Yu 2 3407 2014 10.1039/c3ta14493c A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel 

  390. Nano Res. Ong 7 1528 2014 10.1007/s12274-014-0514-z Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane 

  391. Adv. Funct. Mater. Tu 23 1743 2013 10.1002/adfm.201202349 An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2 -graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane 

  392. Chem. Commun. Li 51 800 2015 10.1039/C4CC08744E All-solid-state Z-scheme system arrays of Fe2V4O13/RGO/CdS for visible light-driving photocatalytic CO2 reduction into renewable hydrocarbon fuel 

  393. Energy Environ. Sci. Sorcar 11 3183 2018 10.1039/C8EE00983J High-rate solar-light photoconversion of CO2 to fuel: controllable transformation from C1 to C2 products 

  394. J. Am. Chem. Soc. Rogers 139 4052 2017 10.1021/jacs.6b12217 Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes 

  395. Appl. Catal. B Environ. Tan 166-167 251 2015 10.1016/j.apcatb.2014.11.035 Noble metal modified reduced graphene oxide/TiO2 ternary nanostructures for efficient visible-light-driven photoreduction of carbon dioxide into methane 

  396. Powder Technol. Wang 261 42 2014 10.1016/j.powtec.2014.04.004 Preparation and characterizations of Cu2O/reduced graphene oxide nanocomposites with high photo-catalytic performances 

  397. ACS Nano Yin 9 2111 2015 10.1021/nn507429e Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets 

  398. ChemSusChem An 7 1086 2014 10.1002/cssc.201301194 Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2 

  399. Chem. Commun. Ong 51 858 2015 10.1039/C4CC08996K Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene-g-C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane 

  400. Adv. Mater. Yu 28 9454 2016 10.1002/adma.201602581 Smart utilization of carbon dots in semiconductor photocatalysis 

  401. Nano Res. Ong 10 1673 2017 10.1007/s12274-016-1391-4 Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: a combined experimental and first-principles DFT study 

  402. Adv. Mater. Jiang 30 1706108 2018 10.1002/adma.201706108 A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction 

  403. Appl. Catal. B Environ. Ong 180 530 2016 10.1016/j.apcatb.2015.06.053 Heterostructured AgX/g-C3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide 

  404. Environ. Sci. Technol. He 49 649 2015 10.1021/es5046309 New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel 

  405. Appl. Surf. Sci. Murugesan 450 516 2018 10.1016/j.apsusc.2018.04.111 A direct Z-scheme plasmonic AgCl@g-C3N4 heterojunction photocatalyst with superior visible light CO2 reduction in aqueous medium 

  406. Phys. Chem. Chem. Phys. Yu 16 11492 2014 10.1039/c4cp00133h Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts 

  407. Dalton Trans. Ong 44 1249 2015 10.1039/C4DT02940B Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane 

  408. Nano Energy Lu 29 439 2016 10.1016/j.nanoen.2016.04.009 Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering 

  409. Chem Sun 3 560 2017 10.1016/j.chempr.2017.09.009 Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials 

  410. Adv. Energy Mater. Zhang 8 1703487 2018 10.1002/aenm.201703487 Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene 

  411. ACS Catal. Huan 7 1520 2017 10.1021/acscatal.6b03353 Electrochemical reduction of CO2 catalyzed by Fe-N-C materials: a structure-selectivity study 

  412. J. Am. Chem. Soc. Li 139 14889 2017 10.1021/jacs.7b09074 Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction 

  413. Nat. Energy Bin Yang 3 140 2018 10.1038/s41560-017-0078-8 Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction 

  414. Energy Environ. Sci. Jiang 11 893 2018 10.1039/C7EE03245E Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction 

  415. Adv. Mater. Bi 30 1706617 2018 10.1002/adma.201706617 Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction 

  416. ACS Nano Abbasi 11 453 2017 10.1021/acsnano.6b06392 Tailoring the edge structure of molybdenum disulfide toward electrocatalytic reduction of carbon dioxide 

  417. ACS Catal. Ji 9 9721 2019 10.1021/acscatal.9b03180 Electrocatalytic CO2 reduction to alcohols with high selectivity over a two-dimensional Fe2P2S6 nanosheet 

  418. Adv. Sci. Xiong 5 1800244 2018 10.1002/advs.201800244 Atomically thin 2D multinary nanosheets for energy-related photo, electrocatalysis 

  419. Chem. Soc. Rev. Wang 48 5310 2019 10.1039/C9CS00163H Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms 

  420. ACS Energy Lett. Bi 3 624 2018 10.1021/acsenergylett.7b01343 Atomically thin two-dimensional solids: an emerging platform for CO2 electroreduction 

  421. Angew. Chem. Int. Ed. Zhang 57 9475 2018 10.1002/anie.201804142 Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces 

  422. J. Am. Chem. Soc. Chen 134 1986 2012 10.1021/ja2108799 Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts 

  423. Angew. Chem. Int. Ed. Li 56 505 2017 10.1002/anie.201608279 Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity 

  424. Chem. Mater. Goodenough 22 587 2010 10.1021/cm901452z Challenges for rechargeable Li batteries 

  425. Nanotechnol. Sci. Appl. Roberts 11 23 2018 10.2147/NSA.S146365 The re-emergence of sodium ion batteries: testing, processing, and manufacturability 

  426. Chem. Commun. Chen 51 18 2015 10.1039/C4CC05109B From a historic review to horizons beyond: lithium-sulphur batteries run on the wheels 

  427. MRS Bull. Bruce 36 506 2011 10.1557/mrs.2011.157 Lithium-air and lithium-sulfur batteries 

  428. Nat. Rev. Mater. Choi 1 16013 2016 10.1038/natrevmats.2016.13 Promise and reality of post-lithium-ion batteries with high energy densities 

  429. ACS Nano Pender 14 1243 2020 10.1021/acsnano.9b04365 Electrode degradation in lithium-ion batteries 

  430. J. Energy Storage Hossain 29 101386 2020 10.1016/j.est.2020.101386 Nanostructured graphene materials utilization in fuel cells and batteries: a review 

  431. ACS Nano Wang 3 907 2009 10.1021/nn900150y Self-assembled TiO2 -graphene hybrid nanostructures for enhanced Li-ion insertion 

  432. J. Power Sources Goriparti 257 421 2014 10.1016/j.jpowsour.2013.11.103 Review on recent progress of nanostructured anode materials for Li-ion batteries 

  433. Energy Environ. Sci. Xu 7 513 2014 10.1039/C3EE40795K Lithium metal anodes for rechargeable batteries 

  434. Mater. Today Wang 15 544 2012 10.1016/S1369-7021(13)70012-9 The dimensionality of Sn anodes in Li-ion batteries 

  435. Adv. Energy Mater. Su 4 1300882 2014 10.1002/aenm.201300882 Silicon-based nanomaterials for lithium-ion batteries: a review 

  436. Nature Poizot 407 496 2000 10.1038/35035045 Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries 

  437. J. Power Sources Zhao 274 869 2015 10.1016/j.jpowsour.2014.10.008 Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: a review 

  438. Nat. Commun. Mo 8 13949 2017 10.1038/ncomms13949 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery 

  439. Angew. Chem. Int. Ed. Yang 49 8408 2010 10.1002/anie.201003485 Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage 

  440. Adv. Mater. Choi 30 1805023 2018 10.1002/adma.201805023 Ultrastable graphene-encapsulated 3 nm nanoparticles by in situ chemical vapor deposition 

  441. ACS Appl. Mater. Interfaces Zhao 7 9709 2015 10.1021/acsami.5b01503 Sandwich-structured graphene-Fe3O4 @carbon nanocomposites for high-performance lithium-ion batteries 

  442. J. Power Sources Huang 235 122 2013 10.1016/j.jpowsour.2013.01.093 Synthesis and electrochemical performances of cobalt sulfides/graphene nanocomposite as anode material of Li-ion battery 

  443. Electrochim. Acta Sun 388 138628 2021 10.1016/j.electacta.2021.138628 Spanish-dagger shaped CoP blooms decorated N-doped carbon branch anode for high-performance lithium and sodium storage 

  444. Electrochim. Acta Dimov 48 1579 2003 10.1016/S0013-4686(03)00030-6 Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations 

  445. Chem. Mater. Lee 21 6 2009 10.1021/cm8022314 Nanocomposites derived from phenol-functionalized Si nanoparticles for high performance lithium ion battery anodes 

  446. Chem. Commun. Lee 46 2025 2010 10.1039/b919738a Silicon nanoparticles-graphene paper composites for Li ion battery anodes 

  447. Carbon N.Y. Xiang 49 1787 2011 10.1016/j.carbon.2011.01.002 Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability 

  448. Electrochem. Commun. Chou 12 303 2010 10.1016/j.elecom.2009.12.024 Enhanced reversible lithium storage in a nanosize silicon/graphene composite 

  449. ACS Omega She 6 12293 2021 10.1021/acsomega.1c01227 Enhanced cycle stability of crumpled graphene-encapsulated silicon anodes via polydopamine sealing 

  450. Energy Technol. Ren 1 77 2013 10.1002/ente.200038 Silicon-graphene composite anodes for high-energy lithium batteries 

  451. Chem. Commun. Zhou 48 2198 2012 10.1039/c2cc17061b Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries 

  452. J. Mater. Chem. A Hu 2 9118 2014 10.1039/C4TA01013B Silicon/graphene based nanocomposite anode: large-scale production and stable high capacity for lithium ion batteries 

  453. Nano Energy Li 5 105 2014 10.1016/j.nanoen.2014.02.011 Encapsulated within graphene shell silicon nanoparticles anchored on vertically aligned graphene trees as lithium ion battery anodes 

  454. J. Alloys Compd. Kim 751 43 2018 10.1016/j.jallcom.2018.04.071 Fabrication of ternary silicon-carbon nanotubes-graphene composites by Co-assembly in evaporating droplets for enhanced electrochemical energy storage 

  455. J. Electroanal. Chem. Tao 797 16 2017 10.1016/j.jelechem.2017.05.010 Porous Si/C/reduced graphene oxide microspheres by spray drying as anode for Li-ion batteries 

  456. Nano Res. Zhang 11 233 2018 10.1007/s12274-017-1624-1 Three-dimensional spongy nanographene-functionalized silicon anodes for lithium ion batteries with superior cycling stability 

  457. J. Phys. Chem. Lett. Luo 3 1824 2012 10.1021/jz3006892 Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes 

  458. Chem. Eng. J. Jiang 335 954 2018 10.1016/j.cej.2017.11.020 A review on manifold synthetic and reprocessing methods of 3D porous graphene-based architecture for Li-ion anode 

  459. Nat. Energy Li 1 15029 2016 10.1038/nenergy.2015.29 Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes 

  460. J. Phys. Chem. Lett. Abraham 6 830 2015 10.1021/jz5026273 Prospects and limits of energy storage in batteries 

  461. Adv. Energy Mater. Zhao 1 1079 2011 10.1002/aenm.201100426 In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries 

  462. J. Power Sources Maroni 269 873 2014 10.1016/j.jpowsour.2014.07.064 Graphene/silicon nanocomposite anode with enhanced electrochemical stability for lithium-ion battery applications 

  463. Carbon N.Y. Zhang 82 161 2015 10.1016/j.carbon.2014.10.046 Pyrolytic carbon-coated Si nanoparticles on elastic graphene framework as anode materials for high-performance lithium-ion batteries 

  464. Angew. Chem. Liu 131 16743 2019 10.1002/ange.201906612 Synergy of epoxy chemical tethers and defect-free graphene in enabling stable lithium cycling of silicon nanoparticles 

  465. ACS Appl. Energy Mater. Palumbo 2 1793 2019 10.1021/acsaem.8b01927 Silicon few-layer graphene nanocomposite as high-capacity and high-rate anode in lithium-ion batteries 

  466. Curr. Appl. Phys. Huang 19 1349 2019 10.1016/j.cap.2019.08.024 Carbon-coated silicon/crumpled graphene composite as anode material for lithium-ion batteries 

  467. J. Power Sources Tang 286 431 2015 10.1016/j.jpowsour.2015.03.185 Porous reduced graphene oxide sheet wrapped silicon composite fabricated by steam etching for lithium-ion battery application 

  468. Nat. Energy House 5 777 2020 10.1038/s41560-020-00697-2 First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk 

  469. Science (80-.) Peng 337 563 2012 10.1126/science.1223985 A reversible and higher-rate Li-O2 battery 

  470. Phys. Chem. Chem. Phys. Balaish 16 2801 2014 10.1039/c3cp54165g A critical review on lithium-air battery electrolytes 

  471. Mater. Today Nitta 18 252 2015 10.1016/j.mattod.2014.10.040 Li-ion battery materials: present and future 

  472. J. Power Sources Debart 174 1177 2007 10.1016/j.jpowsour.2007.06.180 An O2 cathode for rechargeable lithium batteries: the effect of a catalyst 

  473. J. Am. Chem. Soc. Lu 132 12170 2010 10.1021/ja1036572 Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries 

  474. Batteries Supercaps Pan 2 336 2019 10.1002/batt.201800082 Recent progress on transition metal oxides as bifunctional catalysts for lithium-air and zinc-air batteries 

  475. Electrochem. Solid State Lett. Lu 13 A69 2010 10.1149/1.3363047 The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries 

  476. Nano Lett. Lin 17 3252 2017 10.1021/acs.nanolett.7b00872 Ultrahigh-capacity lithium-oxygen batteries enabled by dry-pressed holey graphene air cathodes 

  477. J. Mater. Chem. A Wu 6 12932 2018 10.1039/C8TA03968B The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries 

  478. Nano Res. Zhong 10 472 2017 10.1007/s12274-016-1306-4 Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions 

  479. Adv. Energy Mater. Han 7 1601933 2017 10.1002/aenm.201601933 Full performance nanoporous graphene based Li-O2 batteries through solution phase oxygen reduction and redox-additive mediated Li2O2 oxidation 

  480. Carbon N.Y. Sun 50 727 2012 10.1016/j.carbon.2011.09.040 Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance 

  481. Nanoscale Liu 12 9628 2020 10.1039/C9NR10800A Trace metals dramatically boost oxygen electrocatalysis of N-doped coal-derived carbon for zinc-air batteries 

  482. J. Mater. Chem. A Lin 4 7788 2016 10.1039/C6TA01008C Ruthenium@mesoporous graphene-like carbon: a novel three-dimensional cathode catalyst for lithium-oxygen batteries 

  483. Nano Lett. Yoo 9 2255 2009 10.1021/nl900397t Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface 

  484. ACS Nano Jung 7 3532 2013 10.1021/nn400477d Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries 

  485. J. Electroanal. Chem. Xu 842 98 2019 10.1016/j.jelechem.2019.04.055 RuO2-particle-decorated graphene-nanoribbon cathodes for long-cycle Li-O2 batteries 

  486. Nano Lett. Jeong 15 4261 2015 10.1021/nl504425h Study on the catalytic activity of noble metal nanoparticles on reduced graphene oxide for oxygen evolution reactions in lithium-air batteries 

  487. J. Power Sources Wang 195 358 2010 10.1016/j.jpowsour.2009.06.109 A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy 

  488. J. Solid State Chem. Wu 177 3682 2004 10.1016/j.jssc.2004.06.027 Anodically electrodeposited Co+Ni mixed oxide electrode: preparation and electrocatalytic activity for oxygen evolution in alkaline media 

  489. Nat. Chem. Cheng 3 79 2011 10.1038/nchem.931 Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts 

  490. J. Electrochem. Soc. Wang 158 A1379 2011 10.1149/2.068112jes CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries 

  491. Electrochim. Acta Lim 90 63 2013 10.1016/j.electacta.2012.12.020 Mechanism of Co3O4/graphene catalytic activity in Li-O2 batteries using carbonate based electrolytes 

  492. J. Power Sources Peng 471 228373 2020 10.1016/j.jpowsour.2020.228373 Optimal cobalt oxide (Co3O4): graphene (GR) ratio in Co3O4/GR as air cathode catalyst for air-breathing hybrid electrolyte lithium-air battery 

  493. J. Mater. Chem. A Sun 2 7188 2014 10.1039/C4TA00802B Graphene-Co3O4 nanocomposite as an efficient bifunctional catalyst for lithium-air batteries 

  494. Chem. Sci. Zhang 10 8924 2019 10.1039/C9SC04221K Zinc-air batteries: are they ready for prime time? 

  495. Mater. Sci. Energy Technol. Jamesh 4 1 2021 ORR/OER activity and zinc-air battery performance of various kinds of graphene-based air catalysts 

  496. Appl. Catal. B Environ. Jin 256 117887 2019 10.1016/j.apcatb.2019.117887 A facile method to conduct 3D self-supporting Co-FeCo/N-doped graphene-like carbon bifunctional electrocatalysts for flexible solid-state zinc air battery 

  497. J. Mater. Chem. A Wang 6 516 2018 10.1039/C7TA08423D Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene-CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn-air batteries 

  498. Appl. Catal. B Environ. Ramakrishnan 279 119381 2020 10.1016/j.apcatb.2020.119381 Nitrogen-doped graphene encapsulated FeCoMoS nanoparticles as advanced trifunctional catalyst for water splitting devices and zinc-air batteries 

  499. J. Electrochem. Soc. Lee 160 F910 2013 10.1149/2.016309jes Highly active graphene nanosheets prepared via extremely rapid heating as efficient zinc-air battery electrode material 

  500. ACS Appl. Mater. Interfaces Prabu 6 16545 2014 10.1021/am5047476 Zinc-air battery: understanding the structure and morphology changes of graphene-supported CoMn2O4 bifunctional catalysts under practical rechargeable conditions 

  501. Adv. Funct. Mater. Zeng 26 4397 2016 10.1002/adfm.201600636 Metallic cobalt nanoparticles encapsulated in nitrogen-enriched graphene shells: its bifunctional electrocatalysis and application in zinc-air batteries 

  502. ACS Catal. Zhu 6 6335 2016 10.1021/acscatal.6b01503 Metal-organic framework-induced synthesis of ultrasmall encased NiFe nanoparticles coupling with graphene as an efficient oxygen electrode for a rechargeable Zn-air battery 

  503. J. Mater. Chem. A Samuels 5 10457 2017 10.1039/C7TA01852E Three dimensional hybrid multi-layered graphene-CNT catalyst supports via rapid thermal annealing of nickel acetate 

  504. NPG Asia Mater. Su 8 2016 10.1038/am.2016.91 Ruthenium nanocrystal decorated vertical graphene nanosheets@Ni foam as highly efficient cathode catalysts for lithium-oxygen batteries 

  505. ACS Sustain. Chem. Eng. Liu 8 6109 2020 10.1021/acssuschemeng.0c01237 Rationally designed three-dimensional N-doped graphene architecture mounted with Ru nanoclusters as a high-performance air cathode for lithium-oxygen batteries 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로