$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Effectiveness Analysis of Spin Motion in Reducing Dispersion of Sounding Rocket Flight due to Thrust Misalignment

International journal of aeronautical and space sciences, v.22 no.5, 2021년, pp.1194 - 1208  

Le, Vu Dan Thanh ,  Nguyen, Anh Tuan ,  Nguyen, Lac Hong ,  Dang, Ngoc Thanh ,  Tran, Ngoc Doan ,  Han, Jae-Hung

초록이 없습니다.

참고문헌 (37)

  1. Seibert G (2006) The history of sounding rockets and their contribution to European space research. ESA History Study Reports. 

  2. 10.1142/S2251171716020013 Christe S, Zeiger B, Pfaff R, Garcia M (2016) Introduction to the special issue on sounding rockets and instrumentation. J Astron Instrument 05(01):1602001. https://doi.org/10.1142/S2251171716020013 

  3. Anderson L, Andersson J (1976) Development of the S19 guidance system for the reduction of sounding rocket dispersion. In: AIAA 4th Sounding Rocket Technology Conference. pp 172-178. 

  4. J Spacecr Rocket RN Knauber 33 6 794 1996 10.2514/3.26840 Knauber RN (1996) Thrust misalignments of fixed-nozzle solid rocket motors. J Spacecr Rocket 33(6):794-799. https://doi.org/10.2514/3.26840 

  5. Electronic Code of Federal Regulations (2020) Title 14, Part 417-Launch safety. Federal Register. https://www.ecfr.gov/cgi-bin/text-idx?SID=4539ad3af6ec0c3382cb67c775d1c66c&mc=true&tpl=/ecfrbrowse/Title14/14cfr417_main_02.tpl, Accessed 03 January 2021 

  6. Dunaway GL, Hoidale MM (1969) Unguided rocket impact dispersion at white sands missile range, New Mexico (September 1969). Army electronics command white sands missile range Nm atmospheric sciences office. 

  7. 10.2514/6.1970-1381 Boersma G, Bosgra J, Kruisbrink H, Schmeitink C (1970) Comparison of the impact dispersion of unguided and guided sounding rockets with further evaluation of a velocity controlled rocket. In: 2nd Sounding Rocket Technology Conference. https://doi.org/10.2514/6.1970-1381 

  8. Novlan DJ (1977) Unguided rocket impact dispersion at white sands missile range, New Mexico (Revision). US Army Electronics Command, ADA041587 https://apps.dtic.mil/sti/citations/ADA041587 

  9. J Aerosp Eng S Box 24 1 31 2011 10.1061/(ASCE)AS.1943-5525.0000051 Box S, Bishop CM, Hunt H (2011) Stochastic six-degree-of-freedom flight simulator for passively controlled high-power rockets. J Aerosp Eng 24(1):31-45. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000051 

  10. J Spacecr Rocket F Scheurpflug 49 6 1159 2012 10.2514/1.A32193 Scheurpflug F, Kallenbach A, Cremaschi F (2012) Sounding rocket dispersion reduction impact by second stage pointing control. J Spacecr Rocket 49(6):1159-1162. https://doi.org/10.2514/1.A32193 

  11. J Appl Mech P Tsiotras 60 4 976 1993 10.1115/1.2901011 Tsiotras P, Longuski JM (1993) Analytic solutions for a spinning rigid body subject to time-varying body-fixed torques, part II: time-varying axial torque. J Appl Mech 60(4):976-981. https://doi.org/10.1115/1.2901011 

  12. J Spacecr Rocket DI Javorsek 37 3 359 2000 10.2514/2.3586 Javorsek DI, Longuski JM (2000) Velocity pointing errors associated with spinning thrusting spacecraft. J Spacecr Rocket 37(3):359-365. https://doi.org/10.2514/2.3586 

  13. J Guid Control Dyn JM Longuski 28 6 1301 2005 10.2514/1.12272 Longuski JM, Gick RA, Ayoubi MA, Randall LA (2005) Analytical solutions for thrusting, spinning spacecraft subject to constant forces. J Guid Control Dyn 28(6):1301-1308. https://doi.org/10.2514/1.12272 

  14. J Guid Control Dyn JC Van Der Ha 28 3 412 2005 10.2514/1.3852 Van Der Ha JC, Janssens FL (2005) Jet-damping and misalignment effects during solid-rocket- motor burn. J Guid Control Dyn 28(3):412-420. https://doi.org/10.2514/1.3852 

  15. Acta Astronaut MA Ayoubi 64 7 810 2009 10.1016/j.actaastro.2008.12.015 Ayoubi MA, Longuski JM (2009) Asymptotic theory for thrusting, spinning-up spacecraft maneuvers. Acta Astronaut 64(7):810-831. https://doi.org/10.1016/j.actaastro.2008.12.015 

  16. J Guid Control Dyn MA Ayoubi 37 4 1272 2014 10.2514/1.62695 Ayoubi MA, Martin KM, Longuski JM (2014) Analytical solution for spinning thrusting spacecraft with transverse ramp-up torques. J Guid Control Dyn 37(4):1272-1282. https://doi.org/10.2514/1.62695 

  17. Trans Inst Meas Control Z Liang 41 14 3877 2019 10.1177/0142331219841106 Liang Z, Liao W, Zhang X (2019) Velocity pointing error reduction for symmetric spinning spacecraft via a two-burn scheme. Trans Inst Meas Control 41(14):3877-3886. https://doi.org/10.1177/0142331219841106 

  18. J Appl Phys K Jarmolow 28 308 1957 10.1063/1.1722736 Jarmolow K (1957) Dynamics of a spinning rocket with varying inertia and applied moment. J Appl Phys 28:308. https://doi.org/10.1063/1.1722736 

  19. 10.2514/6.1967-536 Bullard C, Papis T (1967) Determination of the attitude of a spinning rocket under thrust with statistically varied inputs. In: AIAA Guidance, Control, and Flight Mechanics Conference, 1967. 

  20. J Space Saf Eng PD Wilde 5 1 14 2018 10.1016/j.jsse.2018.01.002 Wilde PD (2018) Range safety requirements and methods for sounding rocket launches. J Space Saf Eng 5(1):14-21. https://doi.org/10.1016/j.jsse.2018.01.002 

  21. J Aircr FA Woodward 5 6 528 1968 10.2514/3.43979 Woodward FA (1968) Analysis and design of wing-body combinations at subsonic and supersonic speeds. J Aircr 5(6):528-534. https://doi.org/10.2514/3.43979 

  22. AA Lebedev 1973 Dinamika poleta bespilotnykh letatel’nykh apparatov (Unmanned Aerial Vehicle Flight Dynamics) Lebedev AA, Chernobrovkin LS (1973) Dinamika poleta bespilotnykh letatel’nykh apparatov (Unmanned Aerial Vehicle Flight Dynamics). Mashinostroenie, Moscow ((In Russian)) 

  23. Fleeman EL (2001) Tactical missile design. AIAA 

  24. R. C (2017) NASA-AMES WingBody Panel Code. Public domain aeronautical software. http://www.pdas.com/wingbody.html, Accessed 03 January 2021 

  25. Aerosp Sci Technol WD Zhang 24 1 221 2013 10.1016/j.ast.2011.11.010 Zhang WD, Wang YB, Liu Y (2013) Aerodynamic study of theater ballistic missile target. Aerosp Sci Technol 24(1):221-225. https://doi.org/10.1016/j.ast.2011.11.010 

  26. J Guid Control Dyn J Ahn 36 4 958 2013 10.2514/1.59625 Ahn J, Seo J (2013) Instantaneous impact point prediction using the response-surface method. J Guid Control Dyn 36(4):958-966. https://doi.org/10.2514/1.59625 

  27. J Guid Control Dyn B-U Jo 43 2 373 2020 10.2514/1.G004703 Jo B-U, Ahn J, Roh W-R (2020) Instantaneous impact point guidance considering uncertainty in engine cutoff time. J Guid Control Dyn 43(2):373-382. https://doi.org/10.2514/1.G004703 

  28. J Aeronaut Sci MV Barton 17 4 197 1950 10.2514/8.1592 Barton MV (1950) The effect of variation of mass on the dynamic stability of jet-propelled missiles. J Aeronaut Sci 17(4):197-203. https://doi.org/10.2514/8.1592 

  29. 10.2514/6.2011-1223 Chowdhury S, Beaujardiere JPDL, Brooks M, Roberts L (2011) An integrated six degree-of-freedom trajectory simulator for hybrid sounding rockets. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2011. https://doi.org/10.2514/6.2011-1223 

  30. Int J Aeronaut Space Sci J Huh 18 512 2017 10.5139/IJASS.2017.18.3.512 Huh J, Ahn B, Kim Y, Song H, Yoon H, Kwon S (2017) Development of a university-based simplified H2O2/PE hybrid sounding rocket at KAIST. Int J Aeronaut Space Sci 18:512-521. https://doi.org/10.5139/IJASS.2017.18.3.512 

  31. Adv Mech Eng W Peng 9 7 1 2017 10.1177/1687814017713944 Peng W, Zhang Q, Yang T, Feng Z (2017) A high-precision dynamic model of a sounding rocket and rapid wind compensation method research. Adv Mech Eng 9(7):1-11. https://doi.org/10.1177/1687814017713944 

  32. AIAA J WT Thomson 4 4 766 1966 10.2514/3.3544 Thomson WT (1966) Equations of motion for the variable mass system. AIAA J 4(4):766-768. https://doi.org/10.2514/3.3544 

  33. Eke FO (1998) Dynamics of variable mass systems. NASA Tech Rep 

  34. Int J Aeronaut Space Sci AT Nguyen 20 4 940 2019 10.1007/s42405-019-00165-6 Nguyen AT, Han J-H, Vu TT (2019) The effects of wing mass asymmetry on low-speed flight characteristics of an insect model. Int J Aeronaut Space Sci 20(4):940-952. https://doi.org/10.1007/s42405-019-00165-6 

  35. 10.2514/6.2010-4226 McDaniel M, Evans C, Lesieutre D (2010) The effect of tail fin parameters on the induced roll of a canard-controlled missile. In: 28th AIAA Applied Aerodynamics Conference, 2010. https://doi.org/10.2514/6.2010-4226 

  36. PLoS ONE B Wang 10 3 e0118537 2015 10.1371/journal.pone.0118537 Wang B, Shi W, Miao Z (2015) Confidence analysis of standard deviational ellipse and its extension into higher dimensional euclidean space. PLoS ONE 10(3):e0118537-e0118537. https://doi.org/10.1371/journal.pone.0118537 

  37. Electronic Code of Federal Regulations (2020) Title 14, Part 420-License to operate a launch site. Federal Register. https://www.ecfr.gov/cgi-bin/text-idx?SID=4539ad3af6ec0c3382cb67c775d1c66c&mc=true&tpl=/ecfrbrowse/Title14/14cfr420_main_02.tpl, Accessed 03 January 2021 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로