최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Geometriae dedicata, v.214 no.1, 2021년, pp.399 - 426
Baik, Hyungryul , Kim, Changsub , Kwak, Sanghoon , Shin, Hyunshik
초록이 없습니다.
Ergod. Theor. Dyn. Syst. H Baik 39 1 2017 Baik, H., Rafiqi, A., Wu, C.: Is a typical bi-Perron algebraic unit a pseudo-anosov dilatation? Ergod. Theor. Dyn. Syst. 39, 1-6 (2017)
Math. Res. Not. IMRN. H Baik 24 9974 2018 Baik, H., Shin, H.: Minimal asymptotic translation lengths of Torelli groups and pure braid groups on the curve graph. Math. Res. Not. IMRN. 24, 9974-9987 (2018)
Mich. Math. J. AF Beardon 61 1 133 2012 10.1307/mmj/1331222851 Beardon, A.F., Hockman, M., Short, I.: Geodesic continued fractions. Mich. Math. J. 61(1), 133-150 (2012)
Bell, M.C., Webb, R.C.: Polynomial-time algorithms for the curve graph. arXiv preprint arXiv:1609.09392 (2016)
Acta Mathematica L Bers 141 1 73 1978 10.1007/BF02545743 Bers, L.: An extremal problem for quasiconformal mappings and a theorem by Thurston. Acta Mathematica 141(1), 73-98 (1978)
Inventiones Mathematicae BH Bowditch 171 2 281 2008 10.1007/s00222-007-0081-y Bowditch, B.H.: Tight geodesics in the curve complex. Inventiones Mathematicae 171(2), 281-300 (2008)
J. Number Theor. S Chowla 12 3 372 1980 10.1016/0022-314X(80)90030-X Chowla, S., Cowles, J., Cowles, M.: On the number of conjugacy classes in SL$$(2, \mathbb{Z})$$. J. Number Theor. 12(3), 372-377 (1980)
Amer. J. Math. B Farb 130 3 799 2008 10.1353/ajm.0.0005 Farb, B., Leininger, C.J., Margalit, D.: The lower central series and pseudo-Anosov dilatations. Amer. J. Math. 130(3), 799-827 (2008)
Geom. Topol. V Gadre 15 3 1297 2011 10.2140/gt.2011.15.1297 Gadre, V., Tsai, C.Y.: Minimal pseudo-Anosov translation lengths on the complex of curves. Geom. Topol. 15(3), 1297-1312 (2011)
Math. Res. Lett. V Gadre 20 4 647 2013 10.4310/MRL.2013.v20.n4.a4 Gadre, V., Hironaka, E., Kent, R.P., Leininger, C.J.: Lipschitz constants to curve complexes. Math. Res. Lett. 20(4), 647-656 (2013)
Hatcher, A.: Topology of numbers. Unpublished manuscript, in preparation (2017)
Groups Geom. Dyn. E Kin 13 3 883 2019 10.4171/GGD/508 Kin, E., Shin, H.: Small asymptotic translation lengths of pseudo-Anosov maps on the curve complex. Groups Geom. Dyn. 13(3), 883-907 (2019)
Inventiones Mathematicae HA Masur 138 1 103 1999 10.1007/s002220050343 Masur, H.A., Minsky, Y.N.: Geometry of the complex of curves I: hyperbolicity. Inventiones Mathematicae 138(1), 103-149 (1999)
Series, C.: Continued fractions and hyperbolic geometry (2015)
Geometriae Dedicata KJ Shackleton 160 1 243 2012 10.1007/s10711-011-9680-2 Shackleton, K.J.: Tightness and computing distances in the curve complex. Geometriae Dedicata 160(1), 243-259 (2012)
Geom. Topol. H Shin 19 6 3645 2016 10.2140/gt.2015.19.3645 Shin, H., Strenner, B.: Pseudo-Anosov mapping classes not arising from Penner’s construction. Geom. Topol. 19(6), 3645-3656 (2016)
Archiv der Mathematik J Steinig 59 1 21 1992 10.1007/BF01199010 Steinig, J.: A proof of Lagrange’s theorem on periodic continued fractions. Archiv der Mathematik 59(1), 21-23 (1992)
Bull Am. Math. Soc. WP Thurston 19 2 417 1988 10.1090/S0273-0979-1988-15685-6 Thurston, W.P.: On the geometry and dynamics of diffeomorphisms of surfaces. Bull Am. Math. Soc. 19(2), 417-431 (1988)
New York J. Math. AD Valdivia 20 989 2014 Valdivia, A.D.: Asymptotic translation length in the curve complex. New York J. Math. 20, 989-999 (2014)
Trans. Am. Math. Soc. R Webb 367 10 7323 2015 10.1090/tran/6301 Webb, R.: Combinatorics of tight geodesics and stable lengths. Trans. Am. Math. Soc. 367(10), 7323-7342 (2015)
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.