최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of materials science, v.56 no.32, 2021년, pp.18258 - 18271
Ansari, Nooruddin , Lee, Soo Yeol , Singh, Sudhanshu S. , Jain, Jayant
초록이 없습니다.
Mater Sci Eng A BL Mordike 302 37 2001 10.1016/S0921-5093(00)01351-4 Mordike BL, Ebert T (2001) Magnesium properties-applications-potential. Mater Sci Eng A 302:37-45. https://doi.org/10.1016/S0921-5093(00)01351-4
Scr Mater WJ Joost 128 107 2017 10.1016/j.scriptamat.2016.07.035 Joost WJ, Krajewski PE (2017) Towards magnesium alloys for high-volume automotive applications. Scr Mater 128:107-112. https://doi.org/10.1016/j.scriptamat.2016.07.035
Mater Sci Eng A H Singh 789 2020 10.1016/j.msea.2020.139577 Singh H, Kumar S, Kumar D (2020) The role of in-situ ceramic reinforcements on microstructure evolution and mechanical properties on developed hybrid Mg-MMCs. Mater Sci Eng A 789:139577. https://doi.org/10.1016/j.msea.2020.139577
J Compos Mater H Singh 55 109 2021 10.1177/0021998320946432 Singh H, Kumar D, Singh H (2021) Development of magnesium-based hybrid metal matrix composite through in situ micro, nano reinforcements. J Compos Mater 55:109-123. https://doi.org/10.1177/0021998320946432
Acta Mater J Hirsch 61 818 2013 10.1016/j.actamat.2012.10.044 Hirsch J, Al-Samman T (2013) Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater 61:818-843. https://doi.org/10.1016/j.actamat.2012.10.044
GV Raynor 1959 The Physical Metallurgy of Magnesium and its alloys Raynor GV (1959) The Physical Metallurgy of Magnesium and its alloys. Pergamon Press, Oxford
Mater Sci Eng A M Suzuki 387-389 706 2004 10.1016/j.msea.2003.12.071 Suzuki M, Kimura T, Koike J, Maruyama K (2004) Effects of zinc on creep strength and deformation substructures in Mg-Y alloy. Mater Sci Eng A 387-389:706-709. https://doi.org/10.1016/j.msea.2003.12.071
Acta Mater J Bohlen 55 2101 2007 10.1016/j.actamat.2006.11.013 Bohlen J, Nürnberg MR, Senn JW, Letzig D, Agnew SR (2007) The texture and anisotropy of magnesium-zinc-rare earth alloy sheets. Acta Mater 55:2101-2112. https://doi.org/10.1016/j.actamat.2006.11.013
Scr Mater K Hantzsche 63 725 2010 10.1016/j.scriptamat.2009.12.033 Hantzsche K, Bohlen J, Wendt J, Kainer KU, Yi SB, Letzig D (2010) Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scr Mater 63:725-730. https://doi.org/10.1016/j.scriptamat.2009.12.033
Int J Plast G Proust 25 861 2009 10.1016/j.ijplas.2008.05.005 Proust G, Tomé CN, Jain A, Agnew SR (2009) Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int J Plast 25:861-880. https://doi.org/10.1016/j.ijplas.2008.05.005
Int J Plast SR Agnew 21 1161 2005 10.1016/j.ijplas.2004.05.018 Agnew SR, Duygulu Ö (2005) Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int J Plast 21:1161-1193. https://doi.org/10.1016/j.ijplas.2004.05.018
Mater Sci Eng A H Asgari 623 10 2015 10.1016/j.msea.2014.11.025 Asgari H, Odeshi AG, Szpunar JA, Zeng LJ, Olsson E, Li DY (2015) Effect of yttrium on the twinning and plastic deformation of AE magnesium alloy under ballistic impact. Mater Sci Eng A 623:10-21. https://doi.org/10.1016/j.msea.2014.11.025
10.1126/science.1229369 Nie JF, Zhu YM, Liu JZ, Fang XY, (2013) Periodic segregation of solute atoms in fully coherent twin boundaries, Science (80)340:957-960. Doi: https://doi.org/10.1126/science.1229369.
Acta Mater D Guan 126 132 2017 10.1016/j.actamat.2016.12.058 Guan D, Rainforth WM, Ma L, Wynne B, Gao J (2017) Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy. Acta Mater 126:132-144. https://doi.org/10.1016/j.actamat.2016.12.058
Mater Sci Eng A N Ansari 793 2020 10.1016/j.msea.2020.139856 Ansari N, Sarvesha R, Lee SY, Singh SS, Jain J (2020) Influence of yttrium addition on recrystallization, texture and mechanical properties of binary Mg-Y alloys. Mater Sci Eng A 793:139856. https://doi.org/10.1016/j.msea.2020.139856
Trans Met Soc AIME BC Wonsiewicz 239 1422 1967 Wonsiewicz BC, Backofen WA (1967) Plasticity of magnesium single crystals. Trans Met Soc AIME 239:1422-1431
Acta Mater N Stanford 82 447 2015 10.1016/j.actamat.2014.09.022 Stanford N, Marceau RKW, Barnett MR (2015) The effect of high yttrium solute concentration on the twinning behaviour of magnesium alloys. Acta Mater 82:447-456. https://doi.org/10.1016/j.actamat.2014.09.022
Scr Mater C He 191 62 2021 10.1016/j.scriptamat.2020.08.041 He C, Li Z, Kong D, Zhao X, Chen H, Nie JF (2021) Origin of profuse {112¯1} deformation twins in Mg-Gd alloys. Scr Mater 191:62-66. https://doi.org/10.1016/j.scriptamat.2020.08.041
10.1016/j.msea.2020.139051 Ansari N, Tran B, Poole WJ, Singh SS, Krishnaswamy H, Jain J (2020) High temperature deformation behavior of Mg-5wt.%Y binary alloy: Constitutive analysis and processing maps, Mater Sci Eng A 777:139051. Doi:https://doi.org/10.1016/j.msea.2020.139051.
Fundenburger JJ, Beausir B (2015) JTEX-Software for Texture Analysis. Universite de Lorraine-Metz. http://jtex-software.eu/
Acta Mater SR Agnew 54 4841 2006 10.1016/j.actamat.2006.06.020 Agnew SR, Brown DW, Tomé CN (2006) Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction. Acta Mater 54:4841-4852. https://doi.org/10.1016/j.actamat.2006.06.020
Mater Sci Eng A DW Brown 399 1 2005 10.1016/j.msea.2005.02.016 Brown DW, Agnew SR, Bourke MAM, Holden TM, Vogel SC, Tomé CN (2005) Internal strain and texture evolution during deformation twinning in magnesium. Mater Sci Eng A 399:1-12. https://doi.org/10.1016/j.msea.2005.02.016
Nat Commun M Lentz 7 1 2016 10.1038/ncomms11068 Lentz M, Risse M, Schaefer N, Reimers W, Beyerlein IJ (2016) Strength and ductility with {1011}-{1012} double twinning in a magnesium alloy. Nat Commun 7:1-7. https://doi.org/10.1038/ncomms11068
Acta Mater SR Agnew 49 4277 2001 10.1016/S1359-6454(01)00297-X Agnew SR, Yoo MH, Tomé CN (2001) Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater 49:4277-4289. https://doi.org/10.1016/S1359-6454(01)00297-X
Mater Sci Eng A H Somekawa 561 378 2013 10.1016/j.msea.2012.10.040 Somekawa H, Mukai T (2013) Hall-Petch relation for deformation twinning in solid solution magnesium alloys. Mater Sci Eng A 561:378-385. https://doi.org/10.1016/j.msea.2012.10.040
Mater Sci Eng A Q Peng 528 2106 2011 10.1016/j.msea.2010.11.042 Peng Q, Meng J, Li Y, Huang Y, Hort N (2011) Effect of yttrium addition on lattice parameter, Young’s modulus and vacancy of magnesium. Mater Sci Eng A 528:2106-2109. https://doi.org/10.1016/j.msea.2010.11.042
Hosford WF (2010) Mechanical behavior of materials. Cambridge University Press, Cambridge
J Japan Inst Light Met TH Sato 42 804 1992 10.2464/jilm.42.804 Sato TH, Precipitation A (1992) Precipitation structures of Mg-Y alloys. J Japan Inst Light Met 42:804-809. https://doi.org/10.2464/jilm.42.804
Metall Mater Trans A JF Nie 43A 3891 2012 10.1007/s11661-012-1217-2 Nie JF (2012) Precipitation and hardening in magnesium alloys. Metall Mater Trans A 43A:3891-3939. https://doi.org/10.1007/s11661-012-1217-2
10.1007/s11661-012-1162-0 Qiu D, Zhang MX (2012) Strengthening mechanisms and their superposition law in an age-hardenable Mg-10 wt pct y alloy. Metall Mater Trans A Phys Metall Mater Sci 43:3314-3324. Doi:https://doi.org/10.1007/s11661-012-1162-0.
Materialia A Prasad 14 2020 10.1016/j.msea.2012.07.021 Prasad A, Si S, Ghori UR, Thirunavukkarasu G, Chiu YL, Jones IP, Lee SY, Singh SS, Gosvami NN, Jain J (2020) Effect of La addition on precipitation hardening in Mg-10Dy alloy. Materialia 14:100898. https://doi.org/10.1016/j.mtla.2020.100898.
10.1007/s11661-013-1950-1 Robson JD (2014)s Effect of rare-earth additions on the texture of wrought magnesium alloys: the role of grain boundary segregation. Metall Mater Trans A Phys Metall Mater Sci 45: 3205-3212. Doi:https://doi.org/10.1007/s11661-013-1950-1.
10.1007/s10853-012-6440-0 Farzadfar SA, Martin E, Sanjari M, Essadiqi E, Yue S (2012) Texture weakening and static recrystallization in rolled Mg-2.9Y and Mg-2.9Zn solid solution alloys. J Mater Sci 47:5488-5500. Doi:https://doi.org/10.1007/s10853-012-6440-0.
Mater Sci Eng A WX Wu 556 519 2012 10.1016/j.msea.2012.07.021 Wu WX, Jin L, Dong J, Zhang ZY, Ding WJ (2012) Effect of initial microstructure on the dynamic recrystallization behavior of Mg-Gd-Y-Zr alloy. Mater Sci Eng A 556:519-525. https://doi.org/10.1016/j.msea.2012.07.021
Mater Res Lett Q Yu 2 82 2014 10.1080/21663831.2013.867291 Yu Q, Wang J, Jiang Y, McCabe RJ, Tomé CN (2014) Co-zone (1012) twin interaction in magnesium single crystal. Mater Res Lett 2:82-88. https://doi.org/10.1080/21663831.2013.867291
Mater Sci Eng A S Yi 516 58 2009 10.1016/j.msea.2009.03.015 Yi S, Schestakow I, Zaefferer S (2009) Twinning-related microstructural evolution during hot rolling and subsequent annealing of pure magnesium. Mater Sci Eng A 516:58-64. https://doi.org/10.1016/j.msea.2009.03.015
J Magnes Alloy Y Liu 9 499 2021 10.1016/j.jma.2019.12.011 Liu Y, Li Y, Zhu Q, Zhang H, Qi X, Wang J, Jin P, Zeng X (2021) Twin recrystallization mechanisms in a high strain rate compressed Mg-Zn alloy. J Magnes Alloy 9:499-504. https://doi.org/10.1016/j.jma.2019.12.011
Scr Mater A Styczynski 50 943 2004 10.1016/j.scriptamat.2004.01.010 Styczynski A, Hartig C, Bohlen J, Letzig D (2004) Cold rolling textures in AZ31 wrought magnesium alloy. Scr Mater 50:943-947. https://doi.org/10.1016/j.scriptamat.2004.01.010
Mater Sci Eng A R Cottam 485 375 2008 10.1016/j.msea.2007.08.016 Cottam R, Robson J, Lorimer G, Davis B (2008) Dynamic recrystallization of Mg and Mg-Y alloys: crystallographic texture development. Mater Sci Eng A 485:375-382. https://doi.org/10.1016/j.msea.2007.08.016
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.