$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Fabrication of Thick Microfiber Mats Using Melt-Electrospinning
용융전기방사를 이용한 두꺼운 미세섬유 매트의 제작

한국정밀공학회지 = Journal of the Korean Society for Precision Engineering, v.38 no.7, 2021년, pp.529 - 535  

Kim, Jeong Hwa ,  Shin, Gwang June ,  Jun, Martin Byung-Guk ,  Jeong, Young Hun

초록이 없습니다.

참고문헌 (21)

  1. Huang, Zheng-Ming, Zhang, Y.-Z., Kotaki, M., Ramakrishna, S.. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, vol.63, no.15, 2223-2253.

  2. Zhao, Gengrui, Gong, Shaobo, Wang, Honggang, Ren, Junfang, Wang, Na, Yang, Yawen, Gao, Gui, Chen, Shengsheng, Li, Linlin. Ultrathin Biocompatible Electrospun Fiber Films for Self-Powered Human Motion Sensor. International journal of precision engineering and manufacturing : Green technology, vol.8, no.3, 855-868.

  3. Kim, Hyun Chan, Kim, Debora, Lee, Ji Yun, Zhai, Lindong, Kim, Jaehwan. Effect of Wet Spinning and Stretching to Enhance Mechanical Properties of Cellulose Nanofiber Filament. International journal of precision engineering and manufacturing : Green technology, vol.6, no.3, 567-575.

  4. 10.1142/5894 

  5. Lee, Jongwan, Lee, Seung Yong, Jang, Jinah, Jeong, Young Hun, Cho, Dong-Woo. Fabrication of Patterned Nanofibrous Mats Using Direct-Write Electrospinning. Langmuir : the ACS journal of surfaces and colloids, vol.28, no.18, 7267-7275.

  6. Dayan, Cem Balda, Afghah, Ferdows, Okan, Burcu Saner, Yıldız, Mehmet, Menceloglu, Yusuf, Culha, Mustafa, Koc, Bahattin. Modeling 3D melt electrospinning writing by response surface methodology. Materials & Design, vol.148, 87-95.

  7. Zhmayev, E., Zhou, H., Joo, Y.L.. Modeling of non-isothermal polymer jets in melt electrospinning. Journal of non-Newtonian fluid mechanics, vol.153, no.2, 95-108.

  8. Wunner, Felix M., Wille, Marie‐Luise, Noonan, Thomas G., Bas, Onur, Dalton, Paul D., De‐Juan‐Pardo, Elena M., Hutmacher, Dietmar W.. Melt Electrospinning Writing of Highly Ordered Large Volume Scaffold Architectures. Advanced materials, vol.30, no.20, 1706570-.

  9. Deng, Rongjian, Liu, Yong, Ding, Yumei, Xie, Pengcheng, Luo, Lu, Yang, Weimin. Melt electrospinning of low-density polyethylene having a low-melt flow index. Journal of applied polymer science, vol.114, no.1, 166-175.

  10. Lyons, Jason, Li, Christopher, Ko, Frank. Melt-electrospinning part I: processing parameters and geometric properties. Polymer, vol.45, no.22, 7597-7603.

  11. Ko, Junghyuk, Mohtaram, Nima Khadem, Ahmed, Farid, Montgomery, Amy, Carlson, Michael, Lee, Patrick C.D., Willerth, Stephanie M., Jun, Martin B.G.. Fabrication of poly (ϵ-caprolactone) microfiber scaffolds with varying topography and mechanical properties for stem cell-based tissue engineering applications. Journal of biomaterials science, Polymer edition, vol.25, no.1, 1-17.

  12. Ogata, Nobuo, Yamaguchi, Shinji, Shimada, Naoki, Lu, Gang, Iwata, Toshiharu, Nakane, Koji, Ogihara, Takashi. Poly(lactide) nanofibers produced by a melt-electrospinning system with a laser melting device. Journal of applied polymer science, vol.104, no.3, 1640-1645.

  13. Moroni, L., de Wijn, J.R., van Blitterswijk, C.A.. 3D fiber-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials, vol.27, no.7, 974-985.

  14. Pham, Q. P., Sharma, U., Mikos, A. G.. Electrospun Poly(&egr;-caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds: Characterization of Scaffolds and Measurement of Cellular Infiltration. Biomacromolecules, vol.7, no.10, 2796-2805.

  15. Fujihara, K., Kotaki, M., Ramakrishna, S.. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials, vol.26, no.19, 4139-4147.

  16. Gentile, Piergiorgio, Chiono, Valeria, Tonda‐Turo, Chiara, Ferreira, Ana M., Ciardelli, Gianluca. Polymeric membranes for guided bone regeneration. Biotechnology journal, vol.6, no.10, 1187-1197.

  17. Hassiba, Alaa J, El Zowalaty, Mohamed E, Nasrallah, Gheyath K, Webster, Thomas J, Luyt, Adriaan S, Abdullah, Aboubakr M, Elzatahry, Ahmed A. Review of Recent Research on Biomedical Applications of Electrospun Polymer Nanofibers for Improved Wound Healing. Nanomedicine, vol.11, no.6, 715-737.

  18. Rieger, Katrina A., Birch, Nathan P., Schiffman, Jessica D.. Designing electrospun nanofiber mats to promote wound healing - a review. Journal of materials chemistry. B, Materials for biology and medicine, vol.1, no.36, 4531-.

  19. Billiet, Thomas, Vandenhaute, Mieke, Schelfhout, Jorg, Van Vlierberghe, Sandra, Dubruel, Peter. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, vol.33, no.26, 6020-6041.

  20. Coburn, Jeannine, Gibson, Matt, Bandalini, Pierre Alain, Laird, Christopher, Mao, Hai-Quan, Moroni, Lorenzo, Seliktar, Dror, Elisseeff, Jennifer. Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart structures and systems, vol.7, no.3, 213-222.

  21. Yang, G., Lin, H., Rothrauff, B.B., Yu, S., Tuan, R.S.. Multilayered polycaprolactone/gelatin fiber-hydrogel composite for tendon tissue engineering. Acta Biomaterialia: structure-property-function relationships in biomaterials, vol.35, 68-76.

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로