$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Genome-Scale Analysis of Acetobacterium woodii Identifies Translational Regulation of Acetogenesis 원문보기

mSystems, v.6 no.4, 2021년, pp.e00696-21 -   

Shin, Jongoh (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea) ,  Song, Yoseb (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea) ,  Kang, Seulgi (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea) ,  Jin, Sangrak (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea) ,  Lee, Jung-Kul (Department of Chemical Engineering, Konkuk University, Seoul, Republic of Korea) ,  Kim, Dong Rip (Department of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea) ,  Cho, Suhyung (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea) ,  Müller, Volker (Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt) ,  Cho, Byung-Kwan (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Dae)

Abstract AI-Helper 아이콘AI-Helper

ABSTRACTAcetogens synthesize acetyl-CoA via the CO2-fixing Wood-Ljungdahl pathway. Despite their ecological and biotechnological importance, their translational regulation of carbon and energy metabolisms remains unclear. Here, we report how carbon and energy metabolisms in the model acetogen Acetob...

Keyword

참고문헌 (48)

  1. 1 Bengelsdorf FR , Straub M , Durre P . 2013 . Bacterial synthesis gas (syngas) fermentation . Environ Technol 34 : 1639 ? 1651 . doi: 10.1080/09593330.2013.827747 . 24350425 

  2. 2 Latif H , Zeidan AA , Nielsen AT , Zengler K . 2014 . Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms . Curr Opin Biotechnol 27 : 79 ? 87 . doi: 10.1016/j.copbio.2013.12.001 . 24863900 

  3. 3 Martin WF . 2012 . Hydrogen, metals, bifurcating electrons, and proton gradients: the early evolution of biological energy conservation . FEBS Lett 586 : 485 ? 493 . doi: 10.1016/j.febslet.2011.09.031 . 21978488 

  4. 4 Drake HL , Kusel K , Matthies C . 2006 . Acetogenic prokaryotes , p 354 ? 420 . In Dworkin M , Falkow S , Rosenberg E , Schleifer KH , Stackebrandt E (ed), The prokaryotes. Springer , New York, NY . 10.1007/0-387-30742-7_13 . 

  5. 5 Ragsdale SW . 2008 . Enzymology of the Wood-Ljungdahl pathway of acetogenesis . Ann N Y Acad Sci 1125 : 129 ? 136 . doi: 10.1196/annals.1419.015 . 18378591 

  6. 6 Tan Y , Liu J , Chen X , Zheng H , Li F . 2013 . RNA-seq-based comparative transcriptome analysis of the syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528 grown autotrophically and heterotrophically . Mol Biosyst 9 : 2775 ? 2784 . doi: 10.1039/c3mb70232d . 24056499 

  7. 7 Marcellin E , Behrendorff JB , Nagaraju S , DeTissera S , Segovia S , Palfreyman RW , Daniell J , Licona-Cassani C , Quek L , Speight R , Hodson MP , Simpson SD , Mitchell WP , Kopke M , Nielsen LK . 2016 . Low carbon fuels and commodity chemicals from waste gases―systematic approach to understand energy metabolism in a model acetogen . Green Chem 18 : 3020 ? 3028 . doi: 10.1039/C5GC02708J . 

  8. 8 Aklujkar M , Leang C , Shrestha PM , Shrestha M , Lovley DR . 2017 . Transcriptomic profiles of Clostridium ljungdahlii during lithotrophic growth with syngas or H2 and CO2 compared to organotrophic growth with fructose . Sci Rep 7 : 13135 . doi: 10.1038/s41598-017-12712-w . 29030620 

  9. 9 Shin J , Song Y , Jin S , Lee J-K , Kim DR , Kim SC , Cho S , Cho B-K . 2018 . Genome-scale analysis of Acetobacterium bakii reveals the cold adaptation of psychrotolerant acetogens by post-transcriptional regulation . RNA 24 : 1839 ? 1855 . doi: 10.1261/rna.068239.118 . 30249742 

  10. 10 Song Y , Shin J , Jin S , Lee J-K , Kim DR , Kim SC , Cho S , Cho B-K . 2018 . Genome-scale analysis of syngas fermenting acetogenic bacteria reveals the translational regulation for its autotrophic growth . BMC Genomics 19 : 837 . doi: 10.1186/s12864-018-5238-0 . 30470174 

  11. 11 Vogel C , Marcotte EM . 2012 . Insights into the regulation of protein abundance from proteomic and transcriptomic analyses . Nat Rev Genet 13 : 227 ? 232 . doi: 10.1038/nrg3185 . 22411467 

  12. 12 Russell JB , Cook GM . 1995 . Energetics of bacterial growth: balance of anabolic and catabolic reactions . Microbiol Rev 59 : 48 ? 62 . doi: 10.1128/mr.59.1.48-62.1995 . 7708012 

  13. 13 Spahn S , Brandt K , Muller V . 2015 . A low phosphorylation potential in the acetogen Acetobacterium woodii reflects its lifestyle at the thermodynamic edge of life . Arch Microbiol 197 : 745 ? 751 . doi: 10.1007/s00203-015-1107-2 . 25820826 

  14. 14 Al-Bassam MM , Kim J-N , Zaramela LS , Kellman BP , Zuniga C , Wozniak JM , Gonzalez DJ , Zengler K . 2018 . Optimization of carbon and energy utilization through differential translational efficiency . Nat Commun 9 : 4474 . doi: 10.1038/s41467-018-06993-6 . 30367068 

  15. 15 Ingolia NT , Ghaemmaghami S , Newman JRS , Weissman JS . 2009 . Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling . Science 324 : 218 ? 223 . doi: 10.1126/science.1168978 . 19213877 

  16. 16 Li G-W , Burkhardt D , Gross C , Weissman JS . 2014 . Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources . Cell 157 : 624 ? 635 . doi: 10.1016/j.cell.2014.02.033 . 24766808 

  17. 17 Weinberg DE , Shah P , Eichhorn SW , Hussmann JA , Plotkin JB , Bartel DP . 2016 . Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation . Cell Rep 14 : 1787 ? 1799 . doi: 10.1016/j.celrep.2016.01.043 . 26876183 

  18. 18 Love MI , Huber W , Anders S . 2014 . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 . Genome Biol 15 : 550 . doi: 10.1186/s13059-014-0550-8 . 25516281 

  19. 19 Jeong Y , Kim J-N , Kim MW , Bucca G , Cho S , Yoon YJ , Kim B-G , Roe J-H , Kim SC , Smith CP , Cho B-K . 2016 . The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2) . Nat Commun 7 : 11605 . doi: 10.1038/ncomms11605 . 27251447 

  20. 20 Poehlein A , Schmidt S , Kaster A-K , Goenrich M , Vollmers J , Thurmer A , Bertsch J , Schuchmann K , Voigt B , Hecker M , Daniel R , Thauer RK , Gottschalk G , Muller V . 2012 . An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis . PLoS One 7 : e33439 . doi: 10.1371/journal.pone.0033439 . 22479398 

  21. 21 Schuchmann K , Muller V . 2013 . Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase . Science 342 : 1382 ? 1385 . doi: 10.1126/science.1244758 . 24337298 

  22. 22 Bertsch J , Oppinger C , Hess V , Langer JD , Muller V . 2015 . Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii . J Bacteriol 197 : 1681 ? 1689 . doi: 10.1128/JB.00048-15 . 25733614 

  23. 23 Doukov T , Seravalli J , Stezowski JJ , Ragsdale SW . 2000 . Crystal structure of a methyltetrahydrofolate- and corrinoid-dependent methyltransferase . Structure 8 : 817 ? 830 . doi: 10.1016/S0969-2126(00)00172-6 . 10997901 

  24. 24 Kung Y , Ando N , Doukov TI , Blasiak LC , Bender G , Seravalli J , Ragsdale SW , Drennan CL . 2012 . Visualizing molecular juggling within a B12-dependent methyltransferase complex . Nature 484 : 265 ? 269 . doi: 10.1038/nature10916 . 22419154 

  25. 25 Doukov TI , Iverson TM , Seravalli J , Ragsdale SW , Drennan CL . 2002 . A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase . Science 298 : 567 ? 572 . doi: 10.1126/science.1075843 . 12386327 

  26. 26 Darnault C , Volbeda A , Kim EJ , Legrand P , Vernede X , Lindahl PA , Fontecilla-Camps JC . 2003 . Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase . Nat Struct Biol 10 : 271 ? 279 . doi: 10.1038/nsb912 . 12627225 

  27. 27 Richter H , Molitor B , Wei H , Chen W , Aristilde L , Angenent LT . 2016 . Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression . Energy Environ Sci 9 : 2392 ? 2399 . doi: 10.1039/C6EE01108J . 

  28. 28 Song Y , Lee JS , Shin J , Lee GM , Jin S , Kang S , Lee J-K , Kim DR , Lee EY , Kim SC , Cho S , Kim D , Cho B-K . 2020 . Functional cooperation of the glycine synthase-reductase and Wood-Ljungdahl pathways for autotrophic growth of Clostridium drakei . Proc Natl Acad Sci U S A 117 : 7516 ? 7523 . doi: 10.1073/pnas.1912289117 . 32170009 

  29. 29 Jeong J , Bertsch J , Hess V , Choi S , Choi I-G , Chang IS , Muller V . 2015 . Energy conservation model based on genomic and experimental analyses of a carbon monoxide-utilizing, butyrate-forming acetogen, Eubacterium limosum KIST612 . Appl Environ Microbiol 81 : 4782 ? 4790 . doi: 10.1128/AEM.00675-15 . 25956767 

  30. 30 Dai X , Zhu M , Warren M , Balakrishnan R , Patsalo V , Okano H , Williamson JR , Fredrick K , Wang Y-P , Hwa T . 2016 . Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth . Nat Microbiol 2 : 16231 . doi: 10.1038/nmicrobiol.2016.231 . 27941827 

  31. 31 Duval M , Simonetti A , Caldelari I , Marzi S . 2015 . Multiple ways to regulate translation initiation in bacteria: mechanisms, regulatory circuits, dynamics . Biochimie 114 : 18 ? 29 . doi: 10.1016/j.biochi.2015.03.007 . 25792421 

  32. 32 McManus CJ , May GE , Spealman P , Shteyman A . 2014 . Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast . Genome Res 24 : 422 ? 430 . doi: 10.1101/gr.164996.113 . 24318730 

  33. 33 Gualerzi CO , Pon CL . 1990 . Initiation of mRNA translation in prokaryotes . Biochemistry 29 : 5881 ? 5889 . doi: 10.1021/bi00477a001 . 2200518 

  34. 34 Singh N , Wade JT . 2014 . Identification of regulatory RNA in bacterial genomes by genome-scale mapping of transcription start sites . Methods Mol Biol 1103 : 1 ? 10 . doi: 10.1007/978-1-62703-730-3_1 . 24318882 

  35. 35 Buchan JR , Stansfield I . 2007 . Halting a cellular production line: responses to ribosomal pausing during translation . Biol Cell 99 : 475 ? 487 . doi: 10.1042/BC20070037 . 17696878 

  36. 36 Li SH-J , Li Z , Park JO , King CG , Rabinowitz JD , Wingreen NS , Gitai Z . 2018 . Escherichia coli translation strategies differ across carbon, nitrogen and phosphorus limitation conditions . Nat Microbiol 3 : 939 ? 947 . doi: 10.1038/s41564-018-0199-2 . 30038306 

  37. 37 Gerashchenko MV , Lobanov AV , Gladyshev VN . 2012 . Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress . Proc Natl Acad Sci U S A 109 : 17394 ? 17399 . doi: 10.1073/pnas.1120799109 . 23045643 

  38. 38 Chen H , Bjerknes M , Kumar R , Jay E . 1994 . Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs . Nucleic Acids Res 22 : 4953 ? 4957 . doi: 10.1093/nar/22.23.4953 . 7528374 

  39. 39 Tan X , Surovtsev IV , Lindahl PA . 2006 . Kinetics of CO insertion and acetyl group transfer steps, and a model of the acetyl-CoA synthase catalytic mechanism . J Am Chem Soc 128 : 12331 ? 12338 . doi: 10.1021/ja0627702 . 16967985 

  40. 40 Visser M , Pieterse MM , Pinkse MWH , Nijsse B , Verhaert PDEM , de Vos WM , Schaap PJ , Stams AJM . 2016 . Unravelling the one-carbon metabolism of the acetogen Sporomusa strain An4 by genome and proteome analysis . Environ Microbiol 18 : 2843 ? 2855 . doi: 10.1111/1462-2920.12973 . 26147498 

  41. 41 Hui S , Silverman JM , Chen SS , Erickson DW , Basan M , Wang J , Hwa T , Williamson JR . 2015 . Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria . Mol Syst Biol 11 : 784 . doi: 10.15252/msb.20145697 . 25678603 

  42. 42 Schmidt A , Kochanowski K , Vedelaar S , Ahrne E , Volkmer B , Callipo L , Knoops K , Bauer M , Aebersold R , Heinemann M . 2016 . The quantitative and condition-dependent Escherichia coli proteome . Nat Biotechnol 34 : 104 ? 110 . doi: 10.1038/nbt.3418 . 26641532 

  43. 43 Schuchmann K , Muller V . 2016 . Energetics and application of heterotrophy in acetogenic bacteria . Appl Environ Microbiol 82 : 4056 ? 4069 . doi: 10.1128/AEM.00882-16 . 27208103 

  44. 44 Milon P , Tischenko E , Tom?ic J , Caserta E , Folkers G , Teana AL , Rodnina MV , Pon CL , Boelens R , Gualerzi CO . 2006 . The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor . Proc Natl Acad Sci U S A 103 : 13962 ? 13967 . doi: 10.1073/pnas.0606384103 . 16968770 

  45. 45 Atlas RM . 2010 . Handbook of microbiological media. CRC Press , Boca Raton, FL . 10.1201/EBK1439804063 . 

  46. 46 Popa A , Lebrigand K , Paquet A , Nottet N , Robbe-Sermesant K , Waldmann R , Barbry P . 2016 . RiboProfiling: a Bioconductor package for standard Ribo-seq pipeline processing . F1000Res 5 : 1309 . doi: 10.12688/f1000research.8964.1 . 27347386 

  47. 47 Bailey TL , Boden M , Buske FA , Frith M , Grant CE , Clementi L , Ren J , Li WW , Noble WS . 2009 . MEME SUITE: tools for motif discovery and searching . Nucleic Acids Res 37 : W202 ? W208 . doi: 10.1093/nar/gkp335 . 19458158 

  48. 48 Lorenz R , Bernhart SH , Honer Zu Siederdissen C , Tafer H , Flamm C , Stadler PF , Hofacker IL . 2011 . ViennaRNA package 2.0 . Algorithms Mol Biol 6 : 26 . doi: 10.1186/1748-7188-6-26 . 22115189 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로