최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기International journal of energy research, v.45 no.15, 2021년, pp.21540 - 21551
Suh, Eui Hyun (Department of Energy Engineering, Hanyang University, Seoul, Republic of Korea) , Jeong, Moon‐Ki (School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea) , Lee, Kyumin (Department of Energy Engineering, Hanyang University, Seoul, Republic of Korea) , Jeong, WonJo (Department of Organic and Nano Engineering, and Human‐) , Jang, Jaeyoung (Tech Convergence Program, Hanyang University, Seoul, Republic of Korea) , Jung, In Hwan (Department of Energy Engineering, Hanyang University, Seoul, Republic of Korea)
SummaryMolecular doping of conjugated polymers is the performance‐determining step in the fabrication of organic thermoelectric devices. Although strongly oxidizing salt‐type dopants effectively produce charge carriers in polymer chains, their poor solubility in the processing solvents l...
Tu S , Ziman T , Yu G , et al. Record thermopower found in an IrMn‐based spintronic stack . Nat Commun . 2015 ; 11 : 2023 .
He R , Schierning G , Nielsch K . Thermoelectric devices: a review of devices, architectures, and contact optimization . Adv Mater Technol . 2018 ; 3 : 1700256 .
Alam H , Ramakrishna S . A review on the enhancement of figure of merit from bulk to nano‐thermoelectric materials . Nano Energy . 2013 ; 2 : 190 ‐ 212 .
Untilova V , Biskup T , Biniek L , Vijayakumar V , Brinkmann M . Control of chain alignment and crystallization helps enhance charge conductivities and thermoelectric power factors in sequentially doped P3HT:F4TCNQ films . Macromolecules . 2020 ; 53 : 2441 ‐ 2453 .
Tonga M , Wei L , Lahti PM . Enhanced thermoelectric properties of PEDOT:PSS composites by functionalized single wall carbon nanotubes . Int J Energy Res . 2020 ; 44 : 9149 ‐ 9156 .
Russ B , Glaudell A , Urban JJ , Chabinyc ML , Segalman RA . Organic thermoelectric materials for energy harvesting and temperature control . Nat Rev Mater . 2016 ; 1 : 16050 .
Zeng Y‐J , Wu D , Cao XH , Zhou W‐X , Tang L‐M , Chen K‐Q . Organic thermoelectric materials: Nanoscale organic thermoelectric materials: measurement, theoretical models, and optimization strategies . Adv Funct Mater . 2020 ; 30 : 2070051 .
Yadav P , Patra A . Recent advances in poly(3,4‐ethylenedioxyselenophene) and related polymers . Polym Chem . 2020 ; 11 : 7275 ‐ 7292 .
Qu D , Li X , Wang H , Chen G . Assembly strategy and performance evaluation of flexible thermoelectric devices . Adv Sci . 2019 ; 6 : 1900584 .
Qu D , Huang X , Li X , Wang H , Chen G . Annular flexible thermoelectric devices with integrated‐module architecture . Npj Flex Electron . 2020 ; 4 : 1 .
Shimizu S , Shiogai J , Takemori N , et al. Giant thermoelectric power factor in ultrathin FeSe superconductor . Nat Commun . 2019 ; 10 : 825 .
Jung IH , Hong CT , Lee U‐H , Kang YH , Jang K‐S , Cho SY . High thermoelectric power factor of a diketopyrrolopyrrole‐based low bandgap polymer via finely tuned doping engineering . Sci Rep . 2017 ; 7 : 44704 .
Goel M , Thelakkat M . Polymer thermoelectrics: opportunities and challenges . Macromolecules . 2020 ; 53 : 3632 ‐ 3642 .
He M , Qiu F , Lin Z . Towards high‐performance polymer‐based thermoelectric materials . Energy Environ Sci . 2013 ; 6 : 1352 ‐ 1361 .
Liu Z , Chen G . Advancing flexible thermoelectric devices with polymer composites . Adv Mater Technol . 2020 ; 5 : 2000049 .
Aïch RB , Blouin N , Bouchard A , Leclerc M . Electrical and thermoelectric properties of poly(2,7‐Carbazole) derivatives . Chem Mater . 2009 ; 21 : 751 ‐ 757 .
Tam TLD , Wu G , Chien SW , Lim SFV , Yang S‐W , Xu J . High spin pro‐quinoid benzo[1,2‐c;4,5‐c]bisthiadiazole conjugated polymers for high‐performance solution‐processable polymer thermoelectrics . ACS Mater Lett . 2020 ; 2 : 147 ‐ 152 .
Ding J , Liu Z , Zhao W , et al. Selenium‐substituted diketopyrrolopyrrole polymer for high‐performance p‐type organic thermoelectric materials . Angew Chem Int Ed . 2019 ; 58 : 18994 ‐ 18999 .
Dexter Tam TL , Ng CK , Lim SL , et al. Proquinoidal‐conjugated polymer as an effective strategy for the enhancement of electrical conductivity and thermoelectric properties . Chem Mater . 2019 ; 31 : 8543 ‐ 8550 .
Jacobs IE , Aasen EW , Oliveira JL , et al. Comparison of solution‐mixed and sequentially processed P3HT:F4TCNQ films: effect of doping‐induced aggregation on film morphology . J Mater Chem C . 2016 ; 4 : 3454 ‐ 3466 .
Patel SN , Glaudell AM , Peterson KA , et al. Morphology controls the thermoelectric power factor of a doped semiconducting polymer . Sci Adv . 2017 ; 3 : e1700434 .
Yang CY , Ding Y‐F , Huang D , et al. A thermally activated and highly miscible dopant for n‐type organic thermoelectrics . Nat Commun . 2020 ; 11 : 3292 .
Yamamoto A , Hagino H , Hashimoto Y , Miyazaki K . The effects of thermoelectric film thickness on performance of in‐plane thermoelectric modules . J Electron Mater . 2012 ; 41 : 1799 ‐ 1804 .
Kroon R , Ryan JD , Kiefer D , et al. Bulk doping of millimeter‐thick conjugated polymer foams for plastic thermoelectrics . Adv Funct Mater . 2017 ; 27 : 1704183 .
Fontana MT , Stanfield DA , Scholes DT , Winchell KJ , Tolbert SH , Schwartz BJ . Evaporation vs solution sequential doping of conjugated polymers: F4TCNQ doping of micrometer‐thick P3HT films for thermoelectrics . J Phys Chem C . 2019 ; 123 : 22711 ‐ 22724 .
Suh EH , Jeong YJ , Oh JG , et al. Doping of donor‐acceptor polymers with long side chains via solution mixing for advancing thermoelectric properties . Nano Energy . 2019 ; 58 : 585 ‐ 595 .
Li H , DeCoster ME , Ireland RM , Song J , Hopkins PE , Katz HE . Modification of the poly(bisdodecylquaterthiophene) structure for high and predominantly nonionic conductivity with matched dopants . J Am Chem Soc . 2017 ; 139 : 11149 ‐ 11157 .
Suh EH , Oh JG , Jung J , Noh SH , Lee TS , Jang J . Brønsted acid doping of P3HT with largely soluble tris(pentafluorophenyl)borane for highly conductive and stable organic thermoelectrics via one‐step solution mixing . Adv Energy Mater . 2020 ; 10 : 2002521 .
Wu S , Xing W , Zhu M , et al. Doped thieno[3,4‐b]thiophene‐based copolymers for p‐type organic thermoelectric materials . J Mater Chem C . 2021 ; 9 : 4158 ‐ 4163 .
Reiser P , Müller L , Sivanesan V , et al. Dopant diffusion in sequentially doped poly(3‐hexylthiophene) studied by infrared and photoelectron spectroscopy . J Phys Chem C . 2018 ; 122 : 14518 ‐ 14527 .
Venkateshvaran D , Nikolka M , Sadhanala A , et al. Approaching disorder‐free transport in high‐mobility conjugated polymers . Nature . 2014 ; 515 : 384 ‐ 388 .
Jung IH , Kim H , Park M‐J , et al. Synthesis and characterization of cyclopentadithiophene‐based low bandgap copolymers containing electron‐deficient benzoselenadiazole derivatives for photovoltaic devices . J Polym Sci A Polym Chem . 2010 ; 48 : 1423 ‐ 1432 .
Liang Y , Xu Z , Xia J , et al. For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4% . Adv Mater . 2010 ; 22 : E135 ‐ E138 .
Lee J , Kim J , Nguyen TL , et al. A planar cyclopentadithiophene–benzothiadiazole‐based copolymer with sp2‐hybridized bis(alkylsulfanyl)methylene substituents for organic thermoelectric devices . Macromolecules . 2018 ; 51 : 3360 ‐ 3368 .
Liang Y , Feng D , Wu Y , et al. Highly efficient solar cell polymers developed via fine‐tuning of structural and electronic properties . J Am Chem Soc . 2009 ; 131 : 7792 ‐ 7799 .
Finn PA , Jacobs IE , Armitage J , et al. Effect of polar side chains on neutral and p‐doped polythiophene . J Mater Chem C . 2020 ; 8 : 16216 ‐ 16223 .
Kiefer D , Kroon R , Hofmann AI , et al. Double doping of conjugated polymers with monomer molecular dopants . Nat Mater . 2019 ; 18 : 149 ‐ 155 .
Jung IH , Yu J , Jeong E , et al. Synthesis and photovoltaic properties of cyclopentadithiophene‐based low‐bandgap copolymers that contain electron‐withdrawing thiazole derivatives . Chem A Eur J . 2010 ; 16 : 3743 ‐ 3752 .
Jeong W , Kang J , Jeong M‐K , Won JH , Jung IH . Development of low bandgap polymers for red and near‐infrared fullerene‐free organic photodetectors . New J Chem . 2021 ; 45 : 10872 ‐ 10879 .
Kim J , Kang J , Park Y‐S , et al. Alkylthiazole‐based semicrystalline polymer donors for fullerene‐free organic solar cells . Polym Chem . 2019 ; 10 : 4314 ‐ 4321 .
Jeong M‐K , Lee K , Kang J , Jang J , Jung IH . Thiophene backbone‐based polymers with electron‐withdrawing pendant groups for application in organic thin‐film transistors . New J Chem . 2020 ; 44 : 9321 ‐ 9327 .
Jung J , Suh EH , Jeong YJ , Yang HS , Lee T , Jang J . Efficient debundling of few‐walled carbon nanotubes by wrapping with donor–acceptor polymers for improving thermoelectric properties . ACS Appl Mater Interfaces . 2019 ; 11 : 47330 ‐ 47339 .
Yamamoto J , Furukawa Y . Electronic and vibrational spectra of positive polarons and bipolarons in regioregular poly(3‐hexylthiophene) doped with ferric chloride . J Phys Chem B . 2015 ; 119 : 4788 ‐ 4794 .
Jeong YJ , Jung J , Suh EH , Yun D‐J , Oh JG , Jang J . Self‐healable and stretchable organic thermoelectric materials: electrically percolated polymer nanowires embedded in thermoplastic elastomer matrix . Adv Funct Mater . 2020 ; 30 : 1905809 .
Hynynen J , Kiefer D , Müller C . Influence of crystallinity on the thermoelectric power factor of P3HT vapour‐doped with F4TCNQ . RSC Adv . 2018 ; 8 : 1593 ‐ 1599 .
Jo Y , Oh JG , Kim C , An TK , Jang J , Lee J . Synthetic strategy for thienothiophene‐benzotriazole‐based polymers with high backbone planarity and solubility for field‐effect transistor applications . J Ind Eng Chem . 2020 ; 86 : 150 ‐ 157 .
Takaya T , Mamo MD , Karakawa M , Noh Y‐Y . Isoindigo benzodifurandione based conjugated polymers for high performance organic field‐effect transistors . J Mater Chem C . 2018 ; 6 : 7822 ‐ 7829 .
Park YD , Lee HS , Choi YJ , et al. Solubility‐induced ordered polythiophene precursors for high‐performance organic thin‐film transistors . Adv Funct Mater . 2009 ; 19 : 1200 ‐ 1206 .
Zozoulenko I , Singh A , Singh SK , Gueskine V , Crispin X , Berggren M . Polarons, bipolarons, and absorption spectroscopy of PEDOT . ACS Appl Polym Mater . 2019 ; 1 : 83 ‐ 94 .
Méndez H , Heimel G , Winkler S , et al. Charge‐transfer crystallites as molecular electrical dopants . Nat Commun . 2015 ; 6 : 8560 .
Thomas EM , Davidson EC , Katsumata R , Segalman RA , Chabinyc ML . Branched side chains govern counterion position and doping mechanism in conjugated polythiophenes . ACS Macro Lett . 2018 ; 7 : 1492 ‐ 1497 .
Jacobs IE , Cendra C , Harrelson TF , et al. Polymorphism controls the degree of charge transfer in a molecularly doped semiconducting polymer . Mater Horiz . 2018 ; 5 : 655 ‐ 660 .
Vijayakumar V , Durand P , Zeng H , et al. Influence of dopant size and doping method on the structure and thermoelectric properties of PBTTT films doped with F6TCNNQ and F4TCNQ . J Mater Chem C . 2020 ; 8 : 16470 ‐ 16482 .
Tang K , McFarland FM , Travis S , Lim J , Azoulay JD , Guo S . Aggregation of P3HT as a preferred pathway for its chemical doping with F4‐TCNQ . Chem Commun . 2018 ; 54 : 11925 ‐ 11928 .
Yee PY , Scholes DT , Schwartz BJ , Tolbert SH . Dopant‐induced ordering of amorphous regions in regiorandom P3HT . J Phys Chem Lett . 2019 ; 10 : 4929 ‐ 4934 .
Lim E , Glaudell AM , Miller R , Chabinyc ML . The role of ordering on the thermoelectric properties of blends of regioregular and regiorandom poly(3‐hexylthiophene) . Adv Electron Mater . 2019 ; 5 : 1800915 .
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.