최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기ACS energy letters, v.6, 2021년, pp.4097 - 4107
Kang, Seung-Mo (Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea) , Lee, Han Eol (Division of Advanced Materials Engineering , Jeonbuk National University , 567 Baekje-daero, Deokjin-gu , Jeonju-si , Jeollabuk-do 54896 , Republic of Korea) , Wang, Hee Seung (Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea) , Shin, Jung Ho (Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea) , Jo, Woosung (Wearable Platform Materials Technology Center (WMC) , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Repub) , Lee, Yung , Lee, Hyunhwan , Lee, Daewon , Kim, Yun Hyeok , Kim, Taek-Soo , Lee, Keon Jae , Bae, Byeong-Soo
Self-powered flexible displays that are integrated with flexible power sources are potent bilateral communication tools in the hyperconnected era. Among various flexible power sources, triboelectric nanogenerators (TENGs) have been highlighted due to their lightweight and easy fabrication. However, ...
Lee, S.H., Jeong, C.K., Hwang, G.T., Lee, K.J.. Self-powered flexible inorganic electronic system. Nano energy, vol.14, 111-125.
Wang, Zhong Lin. Self‐Powered Nanosensors and Nanosystems. Advanced materials, vol.24, no.2, 280-285.
Park, Dae Yong, Joe, Daniel J., Kim, Dong Hyun, Park, Hyewon, Han, Jae Hyun, Jeong, Chang Kyu, Park, Hyelim, Park, Jung Gyu, Joung, Boyoung, Lee, Keon Jae. Self‐Powered Real‐Time Arterial Pulse Monitoring Using Ultrathin Epidermal Piezoelectric Sensors. Advanced materials, vol.29, no.37, 1702308-.
Han, Jae Hyun, Bae, Kang Min, Hong, Seong Kwang, Park, Hyunsin, Kwak, Jun-Hyuk, Wang, Hee Seung, Joe, Daniel Juhyung, Park, Jung Hwan, Jung, Young Hoon, Hur, Shin, Yoo, Chang D., Lee, Keon Jae. Machine learning-based self-powered acoustic sensor for speaker recognition. Nano energy, vol.53, 658-665.
Wang, Hee Seung, Hong, Seong Kwang, Han, Jae Hyun, Jung, Young Hoon, Jeong, Hyun Kyu, Im, Tae Hong, Jeong, Chang Kyu, Lee, Bo-Yeon, Kim, Gwangsu, Yoo, Chang D., Lee, Keon Jae. Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Science advances, vol.7, no.7, eabe5683-.
Lee, Minbaek, Bae, Joonho, Lee, Joohyung, Lee, Churl-Seung, Hong, Seunghun, Wang, Zhong Lin. Self-powered environmental sensor system driven by nanogenerators. Energy & environmental science, vol.4, no.9, 3359-3363.
Shi, Bojing, Zheng, Qiang, Jiang, Wen, Yan, Ling, Wang, Xinxin, Liu, Hong, Yao, Yan, Li, Zhou, Wang, Zhong Lin. A Packaged Self‐Powered System with Universal Connectors Based on Hybridized Nanogenerators. Advanced materials, vol.28, no.5, 846-852.
Park, Jung Hwan, Lee, Han Eol, Jeong, Chang Kyu, Kim, Do Hyun, Hong, Seong Kwang, Park, Kwi-Il, Lee, Keon Jae. Self-powered flexible electronics beyond thermal limits. Nano energy, vol.56, 531-546.
Kim, Joohee, Kim, Minji, Lee, Mi-Sun, Kim, Kukjoo, Ji, Sangyoon, Kim, Yun-Tae, Park, Jihun, Na, Kyungmin, Bae, Kwi-Hyun, Kyun Kim, Hong, Bien, Franklin, Young Lee, Chang, Park, Jang-Ung. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nature communications, vol.8, 14997-.
Jung, Young Hoon, Hong, Seong Kwang, Wang, Hee Seung, Han, Jae Hyun, Pham, Trung Xuan, Park, Hyunsin, Kim, Junyeong, Kang, Sunghun, Yoo, Chang D., Lee, Keon Jae. Flexible Piezoelectric Acoustic Sensors and Machine Learning for Speech Processing. Advanced materials, vol.32, no.35, 1904020-.
Han, Jae Hyun, Kwak, Jun-Hyuk, Joe, Daniel Juhyung, Hong, Seong Kwang, Wang, Hee Seung, Park, Jung Hwan, Hur, Shin, Lee, Keon Jae. Basilar membrane-inspired self-powered acoustic sensor enabled by highly sensitive multi tunable frequency band. Nano energy, vol.53, 198-205.
Sun, Haoxuan, Tian, Wei, Cao, Fengren, Xiong, Jie, Li, Liang. Ultrahigh‐Performance Self‐Powered Flexible Double‐Twisted Fibrous Broadband Perovskite Photodetector. Advanced materials, vol.30, no.21, 1706986-.
Lee, Han Eol, Lee, Seung Hyun, Jeong, Minju, Shin, Jung Ho, Ahn, Yuri, Kim, Daesoo, Oh, Sang Ho, Yun, Seok Hyun, Lee, Keon Jae. Trichogenic Photostimulation Using Monolithic Flexible Vertical AlGaInP Light-Emitting Diodes. ACS nano, vol.12, no.9, 9587-9595.
Lee, Han Eol, Shin, Jung Ho, Park, Jung Hwan, Hong, Seong Kwang, Park, Sang Hyun, Lee, Seung Hyung, Lee, Jae Hee, Kang, Il‐Suk, Lee, Keon Jae. Micro Light‐Emitting Diodes for Display and Flexible Biomedical Applications. Advanced functional materials, vol.29, no.24, 1808075-.
Park, Kwi‐Il, Jeong, Chang Kyu, Ryu, Jungho, Hwang, Geon‐Tae, Lee, Keon Jae. Flexible and Large‐Area Nanocomposite Generators Based on Lead Zirconate Titanate Particles and Carbon Nanotubes. Advanced energy materials, vol.3, no.12, 1539-1544.
JeongThese authors contributed equally., Eun Gyo, Jeon, Yongmin, Cho, Seok Ho, Choi, Kyung Cheol. Textile-based washable polymer solar cells for optoelectronic modules: toward self-powered smart clothing. Energy & environmental science, vol.12, no.6, 1878-1889.
Jinno, Hiroaki, Yokota, Tomoyuki, Koizumi, Mari, Yukita, Wakako, Saito, Masahiko, Osaka, Itaru, Fukuda, Kenjiro, Someya, Takao. Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes. Nature communications, vol.12, no.1, 2234-.
Jeong, Chang Kyu, Park, Kwi-Il, Son, Jung Hwan, Hwang, Geon-Tae, Lee, Seung Hyun, Park, Dae Yong, Lee, Han Eol, Lee, Hwan Keon, Byun, Myunghwan, Lee, Keon Jae. Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy & environmental science, vol.7, no.12, 4035-4043.
Guo, Hang, Zhao, Junqing, Dong, Qingshun, Wang, Liduo, Ren, Xueyan, Liu, Song, Zhang, Chi, Dong, Guifang. A self-powered and high-voltage-isolated organic optical communication system based on triboelectric nanogenerators and solar cells. Nano energy, vol.56, 391-399.
Lee, Seung Hyun, Kim, Jeongjin, Shin, Jung Ho, Lee, Han Eol, Kang, Il-Suk, Gwak, Kiuk, Kim, Dae-Shik, Kim, Daesoo, Lee, Keon Jae. Optogenetic control of body movements via flexible vertical light-emitting diodes on brain surface. Nano energy, vol.44, 447-455.
Lee, Han Eol, Choi, JeHyuk, Lee, Seung Hyun, Jeong, Minju, Shin, Jung Ho, Joe, Daniel J., Kim, DoHyun, Kim, Chang Wan, Park, Jung Hwan, Lee, Jae Hee, Kim, Daesoo, Shin, Chan‐Soo, Lee, Keon Jae. Monolithic Flexible Vertical GaN Light‐Emitting Diodes for a Transparent Wireless Brain Optical Stimulator. Advanced materials, vol.30, no.28, 1800649-.
Lee, Han Eol, Lee, Daewon, Lee, Tae-Ik, Shin, Jung Ho, Choi, Gwang-Mun, Kim, Cheolgyu, Lee, Seung Hyung, Lee, Jae Hee, Kim, Yong Ho, Kang, Seung-Mo, Park, Sang Hyun, Kang, Il-Suk, Kim, Taek-Soo, Bae, Byeong-Soo, Lee, Keon Jae. Wireless powered wearable micro light-emitting diodes. Nano energy, vol.55, 454-462.
Gao, Mingyuan, Wang, Ping, Jiang, Lili, Wang, Bowen, Yao, Ye, Liu, Sheng, Chu, Dewei, Cheng, Wenlong, Lu, Yuerui. Power generation for wearable systems. Energy & environmental science, vol.14, no.4, 2114-2157.
Chen, Xu, Liu, Bin, Zhong, Cheng, Liu, Zhi, Liu, Jie, Ma, Lu, Deng, Yida, Han, Xiaopeng, Wu, Tianpin, Hu, Wenbin, Lu, Jun. Flexible Batteries: Ultrathin Co3O4 Layers with Large Contact Area on Carbon Fibers as High‐Performance Electrode for Flexible Zinc-Air Battery Integrated with Flexible Display (Adv. Energy Mater. 18/2017). Advanced energy materials, vol.7, no.18, aenm.201770096-.
Yin, Lu, Scharf, Jonathan, Ma, Jessica, Doux, Jean-Marie, Redquest, Christopher, Le, Viet L., Yin, Yijie, Ortega, Jeff, Wei, Xia, Wang, Joseph, Meng, Ying Shirley. High Performance Printed AgO-Zn Rechargeable Battery for Flexible Electronics. Joule, vol.5, no.1, 228-248.
Gaikwad, Abhinav M., Chu, Howie N., Qeraj, Rigers, Zamarayeva, Alla M., Steingart, Daniel A.. Reinforced Electrode Architecture for a Flexible Battery with Paperlike Characteristics. Energy technology : generation, conversion, storage, distribution, vol.1, no.2, 177-185.
Liu, Lili, Niu, Zhiqiang, Zhang, Li, Zhou, Weiya, Chen, Xiaodong, Xie, Sishen. Nanostructured Graphene Composite Papers for Highly Flexible and Foldable Supercapacitors. Advanced materials, vol.26, no.28, 4855-4862.
Lin, Yuanjing, Chen, Jiaqi, Tavakoli, Mohammad Mahdi, Gao, Yuan, Zhu, Yudong, Zhang, Daquan, Kam, Matthew, He, Zhubing, Fan, Zhiyong. Printable Fabrication of a Fully Integrated and Self‐Powered Sensor System on Plastic Substrates. Advanced materials, vol.31, no.5, 1804285-.
Yuan, Longyan, Xiao, Xu, Ding, Tianpeng, Zhong, Junwen, Zhang, Xianghui, Shen, Yue, Hu, Bin, Huang, Yunhui, Zhou, Jun, Wang, Zhong Lin. Paper‐Based Supercapacitors for Self‐Powered Nanosystems. Angewandte Chemie. international edition, vol.51, no.20, 4934-4938.
Hwang, Geon‐Tae, Park, Hyewon, Lee, Jeong‐Ho, Oh, SeKwon, Park, Kwi‐Il, Byun, Myunghwan, Park, Hyelim, Ahn, Gun, Jeong, Chang Kyu, No, Kwangsoo, Kwon, HyukSang, Lee, Sang‐Goo, Joung, Boyoung, Lee, Keon Jae. Self‐Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN‐PT Piezoelectric Energy Harvester. Advanced materials, vol.26, no.28, 4880-4887.
Ippili, Swathi, Jella, Venkatraju, Kim, Jaegyu, Hong, Seungbum, Yoon, Soon-Gil. Enhanced piezoelectric output performance via control of dielectrics in Fe2+-incorporated MAPbI3 perovskite thin films: Flexible piezoelectric generators. Nano energy, vol.49, 247-256.
Lee, Keun Young, Kumar, Brijesh, Seo, Ju-Seok, Kim, Kwon-Ho, Sohn, Jung Inn, Cha, SeungNam, Choi, Dukhyun, Wang, Zhong Lin, Kim, Sang-Woo. P-Type Polymer-HybridizedHigh-Performance PiezoelectricNanogenerators. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.12, no.4, 1959-1964.
Park, Kwi‐Il, Son, Jung Hwan, Hwang, Geon‐Tae, Jeong, Chang Kyu, Ryu, Jungho, Koo, Min, Choi, Insung, Lee, Seung Hyun, Byun, Myunghwan, Wang, Zhong Lin, Lee, Keon Jae. Highly‐Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates. Advanced materials, vol.26, no.16, 2514-2520.
Jin, Long, Xiao, Xiao, Deng, Weili, Nashalian, Ardo, He, Daren, Raveendran, Vidhur, Yan, Cheng, Su, Hai, Chu, Xiang, Yang, Tao, Li, Wen, Yang, Weiqing, Chen, Jun. Manipulating Relative Permittivity for High-Performance Wearable Triboelectric Nanogenerators. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.20, no.9, 6404-6411.
Paria, Sarbaranjan, Si, Suman Kumar, Karan, Sumanta Kumar, Das, Amit Kumar, Maitra, Anirban, Bera, Ranadip, Halder, Lopamudra, Bera, Aswini, De, Anurima, Khatua, Bhanu Bhusan. A strategy to develop highly efficient TENGs through the dielectric constant, internal resistance optimization, and surface modification. Journal of materials chemistry. A, Materials for energy and sustainability, vol.7, no.8, 3979-3991.
Wang, Meng, Zhang, Nan, Tang, Yingjie, Zhang, Heng, Ning, Chuan, Tian, Lan, Li, Weihan, Zhang, Jiahao, Mao, Yanchao, Liang, Erjun. Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronics. Journal of materials chemistry. A, Materials for energy and sustainability, vol.5, no.24, 12252-12257.
Wu, Changsheng, Wang, Aurelia C., Ding, Wenbo, Guo, Hengyu, Wang, Zhong Lin. Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Advanced energy materials, vol.9, no.1, 1802906-.
Lee, Hyunhwan, Lee, Han Eol, Wang, Hee Seung, Kang, Seung‐Mo, Lee, Daewon, Kim, Yun Hyeok, Shin, Jung Ho, Lim, Young‐Woo, Lee, Keon Jae, Bae, Byeong‐Soo. Hierarchically Surface‐Textured Ultrastable Hybrid Film for Large‐Scale Triboelectric Nanogenerators. Advanced functional materials, vol.30, no.49, 2005610-.
Fan, F.R., Tian, Z.Q., Lin Wang, Z.. Flexible triboelectric generator. Nano energy, vol.1, no.2, 328-334.
Wang, Yang, Yang, Ya, Wang, Zhong Lin. Triboelectric nanogenerators as flexible power sources. Npj flexible electronics, vol.1, no.1, 10-.
Jeong, Chang Kyu, Baek, Kwang Min, Niu, Simiao, Nam, Tae Won, Hur, Yoon Hyung, Park, Dae Yong, Hwang, Geon-Tae, Byun, Myunghwan, Wang, Zhong Lin, Jung, Yeon Sik, Lee, Keon Jae. Topographically-Designed Triboelectric Nanogenerator via Block Copolymer Self-Assembly. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.14, no.12, 7031-7038.
Ha, Minjeong, Park, Jonghwa, Lee, Youngoh, Ko, Hyunhyub. Triboelectric Generators and Sensors for Self-Powered Wearable Electronics. ACS nano, vol.9, no.4, 3421-3427.
Wang, Hee Seung, Jeong, Chang Kyu, Seo, Min-Ho, Joe, Daniel J., Han, Jae Hyun, Yoon, Jun-Bo, Lee, Keon Jae. Performance-enhanced triboelectric nanogenerator enabled by wafer-scale nanogrates of multistep pattern downscaling. Nano energy, vol.35, 415-423.
Cheon, Siuk, Kang, Hyungseok, Kim, Han, Son, Youngin, Lee, Jun Young, Shin, Hyeon‐Jin, Kim, Sang‐Woo, Cho, Jeong Ho. High‐Performance Triboelectric Nanogenerators Based on Electrospun Polyvinylidene Fluoride–Silver Nanowire Composite Nanofibers. Advanced functional materials, vol.28, no.2, 1703778-.
Lee, Bo-Yeon, Kim, Dong Hyun, Park, Jiseul, Park, Kwi-Il, Lee, Keon Jae, Jeong, Chang Kyu. Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. Science and technology of advanced materials, vol.20, no.1, 758-773.
Park, Seoungwoong, Park, Jiseul, Kim, Yeon-gyu, Bae, Sukang, Kim, Tae-Wook, Park, Kwi-Il, Hong, Byung Hee, Jeong, Chang Kyu, Lee, Seoung-Ki. Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors. Nano energy, vol.78, 105266-.
Chun, Jinsung, Ye, Byeong Uk, Lee, Jae Won, Choi, Dukhyun, Kang, Chong-Yun, Kim, Sang-Woo, Wang, Zhong Lin, Baik, Jeong Min. Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nature communications, vol.7, 12985-.
Wang, Jie, Li, Shengming, Yi, Fang, Zi, Yunlong, Lin, Jun, Wang, Xiaofeng, Xu, Youlong, Wang, Zhong Lin. Sustainably powering wearable electronics solely by biomechanical energy. Nature communications, vol.7, 12744-.
Liu, Ye, Wang, Kun, Wu, Chaoxing, Park, Jae Hyeon, Lin, Zhixian, Zhang, Yongai, Zhou, Xiongtu, Guo, Tailiang, Kim, Tae Whan. Triboelectric-nanogenerator-inspired light-emitting diode-in-capacitors for flexible operation in high-voltage and wireless drive modes. Nano energy, vol.78, 105281-.
Ko, Hyunseok, Lim, Yeong-won, Han, Seungwu, Jeong, Chang Kyu, Cho, Sung Beom. Triboelectrification: Backflow and Stuck Charges Are Key. ACS energy letters, vol.6, 2792-2799.
Wang, Sihong, Lin, Long, Xie, Yannan, Jing, Qingshen, Niu, Simiao, Wang, Zhong Lin. Sliding-Triboelectric Nanogenerators Based on In-Plane Charge-Separation Mechanism. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.13, no.5, 2226-2233.
Yang, Ya, Zhang, Hulin, Chen, Jun, Jing, Qingshen, Zhou, Yu Sheng, Wen, Xiaonan, Wang, Zhong Lin. Single-Electrode-Based Sliding Triboelectric Nanogenerator for Self-Powered Displacement Vector Sensor System. ACS nano, vol.7, no.8, 7342-7351.
Wang, Sihong, Xie, Yannan, Niu, Simiao, Lin, Long, Wang, Zhong Lin. Freestanding Triboelectric‐Layer‐Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Non‐contact Modes. Advanced materials, vol.26, no.18, 2818-2824.
Chen, Jie, Guo, Hengyu, He, Xianming, Liu, Guanlin, Xi, Yi, Shi, Haofei, Hu, Chenguo. Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film. ACS applied materials & interfaces, vol.8, no.1, 736-744.
Lee, Jae Won, Cho, Hye Jin, Chun, Jinsung, Kim, Kyeong Nam, Kim, Seongsu, Ahn, Chang Won, Kim, Ill Won, Kim, Ju-Young, Kim, Sang-Woo, Yang, Changduk, Baik, Jeong Min. Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement. Science advances, vol.3, no.5, e1602902-.
Im, Ji-Su, Park, Il-Kyu. Mechanically Robust Magnetic Fe3O4 Nanoparticle/Polyvinylidene Fluoride Composite Nanofiber and Its Application in a Triboelectric Nanogenerator. ACS applied materials & interfaces, vol.10, no.30, 25660-25665.
Jing, Titao, Xu, Bingang, Yang, Yujue. Liquid doping materials as micro-carrier of functional molecules for functionalization of triboelectric materials and flexible triboelectric nanogenerators for energy harvesting and gesture detection. Nano energy, vol.74, 104856-.
Eom, Kijoo, Shin, Young-Eun, Kim, Joong-Kwon, Joo, Se Hun, Kim, Kyungtae, Kwak, Sang Kyu, Ko, Hyunhyub, Jin, Jungho, Kang, Seok Ju. Tailored Poly(vinylidene fluoride-co-trifluoroethylene) Crystal Orientation for a Triboelectric Nanogenerator through Epitaxial Growth on a Chitin Nanofiber Film. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.20, no.9, 6651-6659.
Yang, SeungCheol, Kwak, Seung-Yeon, Jin, JungHo, Bae, Byeong-Soo. Highly Condensed Epoxy−Oligosiloxane-Based Hybrid Material for Transparent Low-k Dielectric Coatings. ACS applied materials & interfaces, vol.1, no.7, 1585-1590.
Jin, JungHo, Ko, Ji‐Hoon, Yang, SeungCheol, Bae, Byeong‐Soo. Rollable Transparent Glass‐Fabric Reinforced Composite Substrate for Flexible Devices. Advanced materials, vol.22, no.40, 4510-4515.
Kim, Joon-Soo, Yang, SeungCheol, Park, HyungJin, Bae, Byeong-Soo. Photo-curable siloxane hybrid material fabricated by a thiol–ene reaction of sol–gel synthesized oligosiloxanes. Chemical communications : Chem comm, vol.47, no.21, 6051-6053.
Kim, Yong Ho, Lim, Young-Woo, Kim, Yun Hyeok, Bae, Byeong-Soo. Thermally Stable Siloxane Hybrid Matrix with Low Dielectric Loss for Copper-Clad Laminates for High-Frequency Applications. ACS applied materials & interfaces, vol.8, no.13, 8335-8340.
Kim, Hwea Yoon, Yoon, Da-Eun, Jang, Junho, Lee, Daewon, Choi, Gwang-Mun, Chang, Joon Ha, Lee, Jeong Yong, Lee, Doh C., Bae, Byeong-Soo. Quantum Dot/Siloxane Composite Film Exceptionally Stable against Oxidation under Heat and Moisture. Journal of the American Chemical Society, vol.138, no.50, 16478-16485.
Lim, Young‐Woo, Kwon, O Eun, Kang, Seung‐Mo, Cho, Hyunsu, Lee, Jonghee, Park, Young‐Sam, Cho, Nam Sung, Jin, Won‐Yong, Lee, Jaeho, Lee, Hyunhwan, Kang, Jae‐Wook, Yoo, Seunghyup, Moon, Jaehyun, Bae, Byeong‐Soo. Built‐In Haze Glass‐Fabric Reinforced Siloxane Hybrid Film for Efficient Organic Light‐Emitting Diodes (OLEDs). Advanced functional materials, vol.28, no.33, 1802944-.
Nagarjuna, Ravikiran, Saifullah, Mohammad S. M., Ganesan, Ramakrishnan. Oxygen insensitive thiol–ene photo-click chemistry for direct imprint lithography of oxides. RSC advances, vol.8, no.21, 11403-11411.
Polar Molecules Debye P. 1929
Dielectric Polymers Billah S. M. R. 2019
Niu, S., Wang, Z.L.. Theoretical systems of triboelectric nanogenerators. Nano energy, vol.14, 161-192.
Byun, Kyung-Eun, Cho, Yeonchoo, Seol, Minsu, Kim, Seongsu, Kim, Sang-Woo, Shin, Hyeon-Jin, Park, Seongjun, Hwang, Sungwoo. Control of Triboelectrification by Engineering Surface Dipole and Surface Electronic State. ACS applied materials & interfaces, vol.8, no.28, 18519-18525.
Zou, Haiyang, Zhang, Ying, Guo, Litong, Wang, Peihong, He, Xu, Dai, Guozhang, Zheng, Haiwu, Chen, Chaoyu, Wang, Aurelia Chi, Xu, Cheng, Wang, Zhong Lin. Quantifying the triboelectric series. Nature communications, vol.10, no.1, 1427-.
Diaz, A.F., Felix-Navarro, R.M.. A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. Journal of electrostatics, vol.62, no.4, 277-290.
Lee, Jong Hyeok, Kim, Kyung Hoon, Choi, Moonkang, Jeon, Jisoo, Yoon, Hyeok Jun, Choi, Jinhyeok, Lee, Young-Seak, Lee, Minbaek, Wie, Jeong Jae. Rational molecular design of polymeric materials toward efficient triboelectric energy harvesting. Nano energy, vol.66, 104158-.
Moon, Hyungsuk, Lee, Changmin, Lee, Woosuk, Kim, Jungwoo, Chae, Heeyeop. Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light‐Emitting Diodes for Display Applications. Advanced materials, vol.31, no.34, 1804294-.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.