최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Npj Computational materials, v.7 no.1, 2021년, pp.140 -
Kim, Yongtae , Kim, Youngsoo , Yang, Charles , Park, Kundo , Gu, Grace X. , Ryu, Seunghwa
AbstractNeural network-based generative models have been actively investigated as an inverse design method for finding novel materials in a vast design space. However, the applicability of conventional generative models is limited because they cannot access data outside the range of training sets. A...
Adv. Eng. Mater. F Libonati 18 1354 2016 10.1002/adem.201600143 Libonati, F., Gu, G. X., Qin, Z., Vergani, L. & Buehler, M. J. Bone‐inspired materials by design: toughness amplification observed using 3D printing and testing. Adv. Eng. Mater. 18, 1354-1363 (2016).
J. Mech. Phys. Solids O Sigmund 45 1037 1997 10.1016/S0022-5096(96)00114-7 Sigmund, O. & Torquato, S. Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 45, 1037-1067 (1997).
Smart Mater. Struct. O Sigmund 8 365 1999 10.1088/0964-1726/8/3/308 Sigmund, O. & Torquato, S. Design of smart composite materials using topology optimization. Smart Mater. Struct. 8, 365 (1999).
Compos. Part B: Eng. Y Kim 167 736 2019 10.1016/j.compositesb.2019.03.039 Kim, Y., Kim, Y., Libonati, F. & Ryu, S. Designing tough isotropic structural composite using computation, 3D printing and testing. Compos. Part B: Eng. 167, 736-745 (2019).
Bioorg. Med. Chem. A-Y Guan 24 342 2016 10.1016/j.bmc.2015.09.031 Guan, A.-Y., Liu, C.-L., Sun, X.-F., Xie, Y. & Wang, M.-A. Discovery of pyridine-based agrochemicals by using intermediate derivatization methods. Bioorg. Med. Chem. 24, 342-353 (2016).
Nat. Commun. H Zhu 10 1 2019 10.1038/s41467-018-07882-8 Zhu, H. et al. Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. Nat. Commun. 10, 1-8 (2019).
Comput. Mech. M Carraturo 64 1589 2019 10.1007/s00466-019-01736-w Carraturo, M. et al. Graded-material design based on phase-field and topology optimization. Comput. Mech. 64, 1589-1600 (2019).
Nat. Commun. C-T Chen 11 1 2020 10.1038/s41467-019-13993-7 Chen, C.-T., Chrzan, D. C. & Gu, G. X. Nano-topology optimization for materials design with atom-by-atom control. Nat. Commun. 11, 1-9 (2020).
Sci. Adv. AM Holder 3 e1700270 2017 10.1126/sciadv.1700270 Holder, A. M. et al. Novel phase diagram behavior and materials design in heterostructural semiconductor alloys. Sci. Adv. 3, e1700270 (2017).
Compos. Struct. Y Kim 220 769 2019 10.1016/j.compstruct.2019.04.017 Kim, Y., Jeong, H., Gu, G. X. & Ryu, S. A three-dimensional fracture pattern diagram of staggered platelet structures. Compos. Struct. 220, 769-775 (2019).
Comput. Mater. Sci. A Radman 91 266 2014 10.1016/j.commatsci.2014.04.064 Radman, A., Huang, X. & Xie, Y. Topological design of microstructures of multi-phase materials for maximum stiffness or thermal conductivity. Comput. Mater. Sci. 91, 266-273 (2014).
Int. J. Solids Struct. N de Kruijf 44 7092 2007 10.1016/j.ijsolstr.2007.03.028 de Kruijf, N., Zhou, S., Li, Q. & Mai, Y.-W. Topological design of structures and composite materials with multiobjectives. Int. J. Solids Struct. 44, 7092-7109 (2007).
Annu. Rev. Mater. Res. M Osanov 46 211 2016 10.1146/annurev-matsci-070115-031826 Osanov, M. & Guest, J. K. Topology optimization for architected materials design. Annu. Rev. Mater. Res. 46, 211-233 (2016).
Sci. Technol. Adv. Mater. S Pruksawan 20 1010 2019 10.1080/14686996.2019.1673670 Pruksawan, S., Lambard, G., Samitsu, S., Sodeyama, K. & Naito, M. Prediction and optimization of epoxy adhesive strength from a small dataset through active learning. Sci. Technol. Adv. Mater. 20, 1010-1021 (2019).
Drug Discov. Today A Lavecchia 20 318 2015 10.1016/j.drudis.2014.10.012 Lavecchia, A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov. Today 20, 318-331 (2015).
Nature KT Butler 559 547 2018 10.1038/s41586-018-0337-2 Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547-555 (2018).
Acta Mater. X Liu 190 105 2020 10.1016/j.actamat.2020.03.016 Liu, X., Athanasiou, C. E., Padture, N. P., Sheldon, B. W. & Gao, H. A machine learning approach to fracture mechanics problems. Acta Mater. 190, 105-112 (2020).
Phys. Rev. Res. PZ Hanakata 2 042006 2020 10.1103/PhysRevResearch.2.042006 Hanakata, P. Z., Cubuk, E. D., Campbell, D. K. & Park, H. S. Forward and inverse design of kirigami via supervised autoencoder. Phys. Rev. Res. 2, 042006 (2020).
Sci. Rep. G Pilania 3 1 2013 10.1038/srep02810 Pilania, G., Wang, C., Jiang, X., Rajasekaran, S. & Ramprasad, R. Accelerating materials property predictions using machine learning. Sci. Rep. 3, 1-6 (2013).
npj Comput. Mater. R Ramprasad 3 1 2017 10.1038/s41524-017-0056-5 Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. Machine learning in materials informatics: recent applications and prospects. npj Comput. Mater. 3, 1-13 (2017).
Adv. Theory Simul. CT Chen 2 1900056 2019 10.1002/adts.201900056 Chen, C. T. & Gu, G. X. Effect of constituent materials on composite performance: exploring design strategies via machine learning. Adv. Theory Simul. 2, 1900056 (2019).
Mater. Horiz. GX Gu 5 939 2018 10.1039/C8MH00653A Gu, G. X., Chen, C.-T., Richmond, D. J. & Buehler, M. J. Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Mater. Horiz. 5, 939-945 (2018).
Extrem. Mech. Lett. GX Gu 18 19 2018 10.1016/j.eml.2017.10.001 Gu, G. X., Chen, C.-T. & Buehler, M. J. De novo composite design based on machine learning algorithm. Extrem. Mech. Lett. 18, 19-28 (2018).
ACS Appl. Mater. Inter Y Kim 12 24458 2020 10.1021/acsami.0c04123 Kim, Y., Yang, C., Kim, Y., Gu, G. X. & Ryu, S. Designing an adhesive pillar shape with deep learning-based optimization. ACS Appl. Mater. Inter. 12, 24458-24465 (2020).
J. Am. Chem. Soc. A Mansouri Tehrani 140 9844 2018 10.1021/jacs.8b02717 Mansouri Tehrani, A. et al. Machine learning directed search for ultraincompressible, superhard materials. J. Am. Chem. Soc. 140, 9844-9853 (2018).
Chem. Sci. J Noh 11 4871 2020 10.1039/D0SC00594K Noh, J., Gu, G. H., Kim, S. & Jung, Y. Machine-enabled inverse design of inorganic solid materials: promises and challenges. Chem. Sci. 11, 4871-4881 (2020).
J. Phys. Chem. Lett. JP Janet 9 1064 2018 10.1021/acs.jpclett.8b00170 Janet, J. P., Chan, L. & Kulik, H. J. Accelerating chemical discovery with machine learning: simulated evolution of spin crossover complexes with an artificial neural network. J. Phys. Chem. Lett. 9, 1064-1071 (2018).
npj Comput. Mater. W-C Chen 7 1 2021 10.1038/s41524-021-00585-7 Chen, W.-C., Schmidt, J. N., Yan, D., Vohra, Y. K. & Chen, C.-C. Machine learning and evolutionary prediction of superhard BCN compounds. npj Comput. Mater. 7, 1-8 (2021).
npj Comput. Mater. P Avery 5 1 2019 10.1038/s41524-019-0226-8 Avery, P. et al. Predicting superhard materials via a machine learning informed evolutionary structure search. npj Comput. Mater. 5, 1-11 (2019).
AIAA J. TW Simpson 39 2233 2001 10.2514/2.1234 Simpson, T. W., Mauery, T. M., Korte, J. J. & Mistree, F. Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA J. 39, 2233-2241 (2001).
J. Aircr. S Jeong 42 413 2005 10.2514/1.6386 Jeong, S., Murayama, M. & Yamamoto, K. Efficient optimization design method using kriging model. J. Aircr. 42, 413-420 (2005).
Int. J. Hydrog. Energy Z Li 44 31633 2019 10.1016/j.ijhydene.2019.10.015 Li, Z., Gerdroodbary, M. B., Valipour, P., Moradi, R. & Babazadeh, H. The optimization via response surface method for micro hydrogen gas actuator. Int. J. Hydrog. Energy 44, 31633-31643 (2019).
Sci. Adv. J Peurifoy 4 eaar4206 2018 10.1126/sciadv.aar4206 Peurifoy, J. et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv. 4, eaar4206 (2018).
Science B Sanchez-Lengeling 361 360 2018 10.1126/science.aat2663 Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360-365 (2018).
Adv. Sci. CT Chen 7 1902607 2020 10.1002/advs.201902607 Chen, C. T. & Gu, G. X. Generative deep neural networks for inverse materials design using backpropagation and active learning. Adv. Sci. 7, 1902607 (2020).
Sci. Adv. B Kim 6 eaax9324 2020 10.1126/sciadv.aax9324 Kim, B., Lee, S. & Kim, J. Inverse design of porous materials using artificial neural networks. Sci. Adv. 6, eaax9324 (2020).
Adv. Eng. Mater. Y-C Hsu 23 20201339 2021 10.1002/adem.202001339 Hsu, Y.-C., Yu, C.-H. & Buehler, M. J. Tuning mechanical properties in polycrystalline solids using a deep generative framework. Adv. Eng. Mater. 23, 20201339 (2021).
J. Cheminformatics J Lim 10 1 2018 10.1186/s13321-018-0286-7 Lim, J., Ryu, S., Kim, J. W. & Kim, W. Y. Molecular generative model based on conditional variational autoencoder for de novo molecular design. J. Cheminformatics 10, 1-9 (2018).
Mater. Des. HT Kollmann 196 109098 2020 10.1016/j.matdes.2020.109098 Kollmann, H. T., Abueidda, D. W., Koric, S., Guleryuz, E. & Sobh, N. A. Deep learning for topology optimization of 2D metamaterials. Mater. Des. 196, 109098 (2020).
npj Comput. Mater. K Kim 4 1 2018 10.1038/s41524-018-0128-1 Kim, K. et al. Deep-learning-based inverse design model for intelligent discovery of organic molecules. npj Comput. Mater. 4, 1-7 (2018).
Matter J Noh 1 1370 2019 10.1016/j.matt.2019.08.017 Noh, J. et al. Inverse design of solid-state materials via a continuous representation. Matter 1, 1370-1384 (2019).
Nat. Mach. Intell. Z Yao 3 76 2021 10.1038/s42256-020-00271-1 Yao, Z. et al. Inverse design of nanoporous crystalline reticular materials with deep generative models. Nat. Mach. Intell. 3, 76-86 (2021).
Marcus, G. Deep learning: A critical appraisal. Preprint at https://arxiv.org/abs/1801.00631 (2018).
Martius, G. & Lampert, C. H. Extrapolation and learning equations. Preprint at https://arxiv.org/abs/1610.02995 (2016).
IEEE Control Syst. Mag. E Barnard 12 50 1992 10.1109/37.158898 Barnard, E. & Wessels, L. Extrapolation and interpolation in neural network classifiers. IEEE Control Syst. Mag. 12, 50-53 (1992).
Adv. Neural Inf. Process. Syst. S Greydanus 32 15379 2019 Greydanus, S., Dzamba, M. & Yosinski, J. Hamiltonian neural networks. Adv. Neural Inf. Process. Syst. 32, 15379-15389 (2019).
J. Comput. Phys. Z Long 399 108925 2019 10.1016/j.jcp.2019.108925 Long, Z., Lu, Y. & Dong, B. PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network. J. Comput. Phys. 399, 108925 (2019).
Kloss, A., Schaal, S. & Bohg, J. Combining learned and analytical models for predicting action effects. Preprint at https://arxiv.org/abs/1710.04102 (2017).
npj Comput. Mater. T Lookman 5 1 2019 10.1038/s41524-019-0153-8 Lookman, T., Balachandran, P. V., Xue, D. & Yuan, R. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. npj Comput. Mater. 5, 1-17 (2019).
Lopedoto, E. & Weyde, T. In International Conference on Innovative Techniques and Applications of Artificial Intelligence. 159-165 (Springer).
Xu, K. et al. How neural networks extrapolate: from feedforward to graph neural networks. Preprint at https://arxiv.org/abs/2009.11848 (2020).
Stat. Comput. G Hooker 22 237 2012 10.1007/s11222-010-9220-1 Hooker, G. & Rosset, S. Prediction-based regularization using data augmented regression. Stat. Comput. 22, 237-249 (2012).
He, K., Zhang, X., Ren, S. & Sun, J. In Proceedings of the IEEE conference on computer vision and pattern recognition. 770-778 (Springer, 2016).
Proc. Natl Acad. Sci. M Mozaffar 116 26414 2019 10.1073/pnas.1911815116 Mozaffar, M. et al. Deep learning predicts path-dependent plasticity. Proc. Natl Acad. Sci. 116, 26414-26420 (2019).
Int. J. Plasticity DW Abueidda 136 102852 2021 10.1016/j.ijplas.2020.102852 Abueidda, D. W., Koric, S., Sobh, N. A. & Sehitoglu, H. Deep learning for plasticity and thermo-viscoplasticity. Int. J. Plasticity 136, 102852 (2021).
10.1088/1755-1315/252/2/022095 Li, L. & Ma, C. In IOP Conference Series: Earth and Environmental Science. 022095 (2019).
J. Sci. Comput. R Campagna 88 1 2021 10.1007/s10915-021-01526-8 Campagna, R. & Perracchione, E. Data-driven extrapolation via feature augmentation based on variably scaled thin plates plines. J. Sci. Comput. 88, 1-15 (2021).
Comput. Mater. Sci. H Jeong 155 483 2018 10.1016/j.commatsci.2018.09.021 Jeong, H., Signetti, S., Han, T.-S. & Ryu, S. Phase field modeling of crack propagation under combined shear and tensile loading with hybrid formulation. Comput. Mater. Sci. 155, 483-492 (2018).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.