$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Deep learning framework for material design space exploration using active transfer learning and data augmentation 원문보기

Npj Computational materials, v.7 no.1, 2021년, pp.140 -   

Kim, Yongtae ,  Kim, Youngsoo ,  Yang, Charles ,  Park, Kundo ,  Gu, Grace X. ,  Ryu, Seunghwa

Abstract AI-Helper 아이콘AI-Helper

AbstractNeural network-based generative models have been actively investigated as an inverse design method for finding novel materials in a vast design space. However, the applicability of conventional generative models is limited because they cannot access data outside the range of training sets. A...

참고문헌 (60)

  1. Adv. Eng. Mater. F Libonati 18 1354 2016 10.1002/adem.201600143 Libonati, F., Gu, G. X., Qin, Z., Vergani, L. & Buehler, M. J. Bone‐inspired materials by design: toughness amplification observed using 3D printing and testing. Adv. Eng. Mater. 18, 1354-1363 (2016). 

  2. J. Mech. Phys. Solids O Sigmund 45 1037 1997 10.1016/S0022-5096(96)00114-7 Sigmund, O. & Torquato, S. Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 45, 1037-1067 (1997). 

  3. Smart Mater. Struct. O Sigmund 8 365 1999 10.1088/0964-1726/8/3/308 Sigmund, O. & Torquato, S. Design of smart composite materials using topology optimization. Smart Mater. Struct. 8, 365 (1999). 

  4. Compos. Part B: Eng. Y Kim 167 736 2019 10.1016/j.compositesb.2019.03.039 Kim, Y., Kim, Y., Libonati, F. & Ryu, S. Designing tough isotropic structural composite using computation, 3D printing and testing. Compos. Part B: Eng. 167, 736-745 (2019). 

  5. Bioorg. Med. Chem. A-Y Guan 24 342 2016 10.1016/j.bmc.2015.09.031 Guan, A.-Y., Liu, C.-L., Sun, X.-F., Xie, Y. & Wang, M.-A. Discovery of pyridine-based agrochemicals by using intermediate derivatization methods. Bioorg. Med. Chem. 24, 342-353 (2016). 

  6. Nat. Commun. H Zhu 10 1 2019 10.1038/s41467-018-07882-8 Zhu, H. et al. Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. Nat. Commun. 10, 1-8 (2019). 

  7. Comput. Mech. M Carraturo 64 1589 2019 10.1007/s00466-019-01736-w Carraturo, M. et al. Graded-material design based on phase-field and topology optimization. Comput. Mech. 64, 1589-1600 (2019). 

  8. Nat. Commun. C-T Chen 11 1 2020 10.1038/s41467-019-13993-7 Chen, C.-T., Chrzan, D. C. & Gu, G. X. Nano-topology optimization for materials design with atom-by-atom control. Nat. Commun. 11, 1-9 (2020). 

  9. Sci. Adv. AM Holder 3 e1700270 2017 10.1126/sciadv.1700270 Holder, A. M. et al. Novel phase diagram behavior and materials design in heterostructural semiconductor alloys. Sci. Adv. 3, e1700270 (2017). 

  10. Compos. Struct. Y Kim 220 769 2019 10.1016/j.compstruct.2019.04.017 Kim, Y., Jeong, H., Gu, G. X. & Ryu, S. A three-dimensional fracture pattern diagram of staggered platelet structures. Compos. Struct. 220, 769-775 (2019). 

  11. Comput. Mater. Sci. A Radman 91 266 2014 10.1016/j.commatsci.2014.04.064 Radman, A., Huang, X. & Xie, Y. Topological design of microstructures of multi-phase materials for maximum stiffness or thermal conductivity. Comput. Mater. Sci. 91, 266-273 (2014). 

  12. Int. J. Solids Struct. N de Kruijf 44 7092 2007 10.1016/j.ijsolstr.2007.03.028 de Kruijf, N., Zhou, S., Li, Q. & Mai, Y.-W. Topological design of structures and composite materials with multiobjectives. Int. J. Solids Struct. 44, 7092-7109 (2007). 

  13. Annu. Rev. Mater. Res. M Osanov 46 211 2016 10.1146/annurev-matsci-070115-031826 Osanov, M. & Guest, J. K. Topology optimization for architected materials design. Annu. Rev. Mater. Res. 46, 211-233 (2016). 

  14. Sci. Technol. Adv. Mater. S Pruksawan 20 1010 2019 10.1080/14686996.2019.1673670 Pruksawan, S., Lambard, G., Samitsu, S., Sodeyama, K. & Naito, M. Prediction and optimization of epoxy adhesive strength from a small dataset through active learning. Sci. Technol. Adv. Mater. 20, 1010-1021 (2019). 

  15. Drug Discov. Today A Lavecchia 20 318 2015 10.1016/j.drudis.2014.10.012 Lavecchia, A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov. Today 20, 318-331 (2015). 

  16. Nature KT Butler 559 547 2018 10.1038/s41586-018-0337-2 Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547-555 (2018). 

  17. Acta Mater. X Liu 190 105 2020 10.1016/j.actamat.2020.03.016 Liu, X., Athanasiou, C. E., Padture, N. P., Sheldon, B. W. & Gao, H. A machine learning approach to fracture mechanics problems. Acta Mater. 190, 105-112 (2020). 

  18. Phys. Rev. Res. PZ Hanakata 2 042006 2020 10.1103/PhysRevResearch.2.042006 Hanakata, P. Z., Cubuk, E. D., Campbell, D. K. & Park, H. S. Forward and inverse design of kirigami via supervised autoencoder. Phys. Rev. Res. 2, 042006 (2020). 

  19. Sci. Rep. G Pilania 3 1 2013 10.1038/srep02810 Pilania, G., Wang, C., Jiang, X., Rajasekaran, S. & Ramprasad, R. Accelerating materials property predictions using machine learning. Sci. Rep. 3, 1-6 (2013). 

  20. npj Comput. Mater. R Ramprasad 3 1 2017 10.1038/s41524-017-0056-5 Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. Machine learning in materials informatics: recent applications and prospects. npj Comput. Mater. 3, 1-13 (2017). 

  21. Adv. Theory Simul. CT Chen 2 1900056 2019 10.1002/adts.201900056 Chen, C. T. & Gu, G. X. Effect of constituent materials on composite performance: exploring design strategies via machine learning. Adv. Theory Simul. 2, 1900056 (2019). 

  22. Mater. Horiz. GX Gu 5 939 2018 10.1039/C8MH00653A Gu, G. X., Chen, C.-T., Richmond, D. J. & Buehler, M. J. Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Mater. Horiz. 5, 939-945 (2018). 

  23. Extrem. Mech. Lett. GX Gu 18 19 2018 10.1016/j.eml.2017.10.001 Gu, G. X., Chen, C.-T. & Buehler, M. J. De novo composite design based on machine learning algorithm. Extrem. Mech. Lett. 18, 19-28 (2018). 

  24. ACS Appl. Mater. Inter Y Kim 12 24458 2020 10.1021/acsami.0c04123 Kim, Y., Yang, C., Kim, Y., Gu, G. X. & Ryu, S. Designing an adhesive pillar shape with deep learning-based optimization. ACS Appl. Mater. Inter. 12, 24458-24465 (2020). 

  25. J. Am. Chem. Soc. A Mansouri Tehrani 140 9844 2018 10.1021/jacs.8b02717 Mansouri Tehrani, A. et al. Machine learning directed search for ultraincompressible, superhard materials. J. Am. Chem. Soc. 140, 9844-9853 (2018). 

  26. Chem. Sci. J Noh 11 4871 2020 10.1039/D0SC00594K Noh, J., Gu, G. H., Kim, S. & Jung, Y. Machine-enabled inverse design of inorganic solid materials: promises and challenges. Chem. Sci. 11, 4871-4881 (2020). 

  27. J. Phys. Chem. Lett. JP Janet 9 1064 2018 10.1021/acs.jpclett.8b00170 Janet, J. P., Chan, L. & Kulik, H. J. Accelerating chemical discovery with machine learning: simulated evolution of spin crossover complexes with an artificial neural network. J. Phys. Chem. Lett. 9, 1064-1071 (2018). 

  28. npj Comput. Mater. W-C Chen 7 1 2021 10.1038/s41524-021-00585-7 Chen, W.-C., Schmidt, J. N., Yan, D., Vohra, Y. K. & Chen, C.-C. Machine learning and evolutionary prediction of superhard BCN compounds. npj Comput. Mater. 7, 1-8 (2021). 

  29. npj Comput. Mater. P Avery 5 1 2019 10.1038/s41524-019-0226-8 Avery, P. et al. Predicting superhard materials via a machine learning informed evolutionary structure search. npj Comput. Mater. 5, 1-11 (2019). 

  30. AIAA J. TW Simpson 39 2233 2001 10.2514/2.1234 Simpson, T. W., Mauery, T. M., Korte, J. J. & Mistree, F. Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA J. 39, 2233-2241 (2001). 

  31. J. Aircr. S Jeong 42 413 2005 10.2514/1.6386 Jeong, S., Murayama, M. & Yamamoto, K. Efficient optimization design method using kriging model. J. Aircr. 42, 413-420 (2005). 

  32. Int. J. Hydrog. Energy Z Li 44 31633 2019 10.1016/j.ijhydene.2019.10.015 Li, Z., Gerdroodbary, M. B., Valipour, P., Moradi, R. & Babazadeh, H. The optimization via response surface method for micro hydrogen gas actuator. Int. J. Hydrog. Energy 44, 31633-31643 (2019). 

  33. Sci. Adv. J Peurifoy 4 eaar4206 2018 10.1126/sciadv.aar4206 Peurifoy, J. et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv. 4, eaar4206 (2018). 

  34. Science B Sanchez-Lengeling 361 360 2018 10.1126/science.aat2663 Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360-365 (2018). 

  35. Adv. Sci. CT Chen 7 1902607 2020 10.1002/advs.201902607 Chen, C. T. & Gu, G. X. Generative deep neural networks for inverse materials design using backpropagation and active learning. Adv. Sci. 7, 1902607 (2020). 

  36. Sci. Adv. B Kim 6 eaax9324 2020 10.1126/sciadv.aax9324 Kim, B., Lee, S. & Kim, J. Inverse design of porous materials using artificial neural networks. Sci. Adv. 6, eaax9324 (2020). 

  37. Adv. Eng. Mater. Y-C Hsu 23 20201339 2021 10.1002/adem.202001339 Hsu, Y.-C., Yu, C.-H. & Buehler, M. J. Tuning mechanical properties in polycrystalline solids using a deep generative framework. Adv. Eng. Mater. 23, 20201339 (2021). 

  38. J. Cheminformatics J Lim 10 1 2018 10.1186/s13321-018-0286-7 Lim, J., Ryu, S., Kim, J. W. & Kim, W. Y. Molecular generative model based on conditional variational autoencoder for de novo molecular design. J. Cheminformatics 10, 1-9 (2018). 

  39. Mater. Des. HT Kollmann 196 109098 2020 10.1016/j.matdes.2020.109098 Kollmann, H. T., Abueidda, D. W., Koric, S., Guleryuz, E. & Sobh, N. A. Deep learning for topology optimization of 2D metamaterials. Mater. Des. 196, 109098 (2020). 

  40. npj Comput. Mater. K Kim 4 1 2018 10.1038/s41524-018-0128-1 Kim, K. et al. Deep-learning-based inverse design model for intelligent discovery of organic molecules. npj Comput. Mater. 4, 1-7 (2018). 

  41. Matter J Noh 1 1370 2019 10.1016/j.matt.2019.08.017 Noh, J. et al. Inverse design of solid-state materials via a continuous representation. Matter 1, 1370-1384 (2019). 

  42. Nat. Mach. Intell. Z Yao 3 76 2021 10.1038/s42256-020-00271-1 Yao, Z. et al. Inverse design of nanoporous crystalline reticular materials with deep generative models. Nat. Mach. Intell. 3, 76-86 (2021). 

  43. Marcus, G. Deep learning: A critical appraisal. Preprint at https://arxiv.org/abs/1801.00631 (2018). 

  44. Martius, G. & Lampert, C. H. Extrapolation and learning equations. Preprint at https://arxiv.org/abs/1610.02995 (2016). 

  45. IEEE Control Syst. Mag. E Barnard 12 50 1992 10.1109/37.158898 Barnard, E. & Wessels, L. Extrapolation and interpolation in neural network classifiers. IEEE Control Syst. Mag. 12, 50-53 (1992). 

  46. 10.18653/v1/W18-1005 Mitchell, J., Minervini, P., Stenetorp, P. & Riedel, S. Extrapolation in NLP. Preprint at https://arxiv.org/abs/1805.06648 (2018). 

  47. Adv. Neural Inf. Process. Syst. S Greydanus 32 15379 2019 Greydanus, S., Dzamba, M. & Yosinski, J. Hamiltonian neural networks. Adv. Neural Inf. Process. Syst. 32, 15379-15389 (2019). 

  48. J. Comput. Phys. Z Long 399 108925 2019 10.1016/j.jcp.2019.108925 Long, Z., Lu, Y. & Dong, B. PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network. J. Comput. Phys. 399, 108925 (2019). 

  49. Kloss, A., Schaal, S. & Bohg, J. Combining learned and analytical models for predicting action effects. Preprint at https://arxiv.org/abs/1710.04102 (2017). 

  50. npj Comput. Mater. T Lookman 5 1 2019 10.1038/s41524-019-0153-8 Lookman, T., Balachandran, P. V., Xue, D. & Yuan, R. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. npj Comput. Mater. 5, 1-17 (2019). 

  51. Lopedoto, E. & Weyde, T. In International Conference on Innovative Techniques and Applications of Artificial Intelligence. 159-165 (Springer). 

  52. Xu, K. et al. How neural networks extrapolate: from feedforward to graph neural networks. Preprint at https://arxiv.org/abs/2009.11848 (2020). 

  53. Stat. Comput. G Hooker 22 237 2012 10.1007/s11222-010-9220-1 Hooker, G. & Rosset, S. Prediction-based regularization using data augmented regression. Stat. Comput. 22, 237-249 (2012). 

  54. 10.1007/978-3-319-46493-0_38 He, K., Zhang, X., Ren, S. & Sun, J. In European conference on computer vision. 630-645 (Springer, 2016). 

  55. He, K., Zhang, X., Ren, S. & Sun, J. In Proceedings of the IEEE conference on computer vision and pattern recognition. 770-778 (Springer, 2016). 

  56. Proc. Natl Acad. Sci. M Mozaffar 116 26414 2019 10.1073/pnas.1911815116 Mozaffar, M. et al. Deep learning predicts path-dependent plasticity. Proc. Natl Acad. Sci. 116, 26414-26420 (2019). 

  57. Int. J. Plasticity DW Abueidda 136 102852 2021 10.1016/j.ijplas.2020.102852 Abueidda, D. W., Koric, S., Sobh, N. A. & Sehitoglu, H. Deep learning for plasticity and thermo-viscoplasticity. Int. J. Plasticity 136, 102852 (2021). 

  58. 10.1088/1755-1315/252/2/022095 Li, L. & Ma, C. In IOP Conference Series: Earth and Environmental Science. 022095 (2019). 

  59. J. Sci. Comput. R Campagna 88 1 2021 10.1007/s10915-021-01526-8 Campagna, R. & Perracchione, E. Data-driven extrapolation via feature augmentation based on variably scaled thin plates plines. J. Sci. Comput. 88, 1-15 (2021). 

  60. Comput. Mater. Sci. H Jeong 155 483 2018 10.1016/j.commatsci.2018.09.021 Jeong, H., Signetti, S., Han, T.-S. & Ryu, S. Phase field modeling of crack propagation under combined shear and tensile loading with hybrid formulation. Comput. Mater. Sci. 155, 483-492 (2018). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로