$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Gated feedforward inhibition in the frontal cortex releases goal-directed action 원문보기

Nature neuroscience, v.24 no.10, 2021년, pp.1452 - 1464  

Kim, Jae-Hyun ,  Ma, Dong-Hyun ,  Jung, Eunji ,  Choi, Ilsong ,  Lee, Seung-Hee

초록이 없습니다.

참고문헌 (56)

  1. Trends Neurosci. S Crochet 42 66 2019 10.1016/j.tins.2018.08.011 Crochet, S., Lee, S. H. & Petersen, C. C. H. Neural circuits for goal-directed sensorimotor transformations. Trends Neurosci. 42, 66-77 (2019). 

  2. Neuron L Pinto 87 437 2015 10.1016/j.neuron.2015.06.021 Pinto, L. & Dan, Y. Cell-type-specific activity in prefrontal cortex during goal-directed behavior. Neuron 87, 437-450 (2015). 

  3. Nature N Li 519 51 2015 10.1038/nature14178 Li, N., Chen, T. W., Guo, Z. V., Gerfen, C. R. & Svoboda, K. A motor cortex circuit for motor planning and movement. Nature 519, 51-56 (2015). 

  4. Nat. Neurosci. M Murakami 17 1574 2014 10.1038/nn.3826 Murakami, M., Vicente, M. I., Costa, G. M. & Mainen, Z. F. Neural antecedents of self-initiated actions in secondary motor cortex. Nat. Neurosci. 17, 1574-1582 (2014). 

  5. Science DP Hanes 274 427 1996 10.1126/science.274.5286.427 Hanes, D. P. & Schall, J. D. Neural control of voluntary movement initiation. Science 274, 427-430 (1996). 

  6. Trends Neurosci. JD Schall 42 848 2019 10.1016/j.tins.2019.10.001 Schall, J. D. Accumulators, neurons, and response time. Trends Neurosci. 42, 848-860 (2019). 

  7. J. Neurosci. BA Purcell 32 3433 2012 10.1523/JNEUROSCI.4622-11.2012 Purcell, B. A., Schall, J. D., Logan, G. D. & Palmeri, T. J. From salience to saccades: multiple-alternative gated stochastic accumulator model of visual search. J. Neurosci. 32, 3433-3446 (2012). 

  8. Neuroscience NS Narayanan 139 865 2006 10.1016/j.neuroscience.2005.11.072 Narayanan, N. S., Horst, N. K. & Laubach, M. Reversible inactivations of rat medial prefrontal cortex impair the ability to wait for a stimulus. Neuroscience 139, 865-876 (2006). 

  9. Neuron NS Narayanan 52 921 2006 10.1016/j.neuron.2006.10.021 Narayanan, N. S. & Laubach, M. Top-down control of motor cortex ensembles by dorsomedial prefrontal cortex. Neuron 52, 921-931 (2006). 

  10. Cereb. Cortex JL Muir 6 470 1996 10.1093/cercor/6.3.470 Muir, J. L., Everitt, B. J. & Robbins, T. W. The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task. Cereb. Cortex 6, 470-481 (1996). 

  11. Science S Zhang 345 660 2014 10.1126/science.1254126 Zhang, S. et al. Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345, 660-665 (2014). 

  12. Neuron M Leinweber 95 1420 2017 10.1016/j.neuron.2017.08.036 Leinweber, M., Ward, D. R., Sobczak, J. M., Attinger, A. & Keller, G. B. A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 95, 1420-1432 (2017). 

  13. Science CS Carter 280 747 1998 10.1126/science.280.5364.747 Carter, C. S. et al. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280, 747-749 (1998). 

  14. Science M Shidara 296 1709 2002 10.1126/science.1069504 Shidara, M. & Richmond, B. J. Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science 296, 1709-1711 (2002). 

  15. Neuron A Shenhav 79 217 2013 10.1016/j.neuron.2013.07.007 Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217-240 (2013). 

  16. Nat. Neurosci. S Zhang 19 1733 2016 10.1038/nn.4417 Zhang, S. et al. Organization of long-range inputs and outputs of frontal cortex for top-down control. Nat. Neurosci. 19, 1733-1742 (2016). 

  17. Cereb. Cortex LG Ungerleider 18 477 2008 10.1093/cercor/bhm061 Ungerleider, L. G., Galkin, T. W., Desimone, R. & Gattass, R. Cortical connections of area V4 in the macaque. Cereb. Cortex 18, 477-499 (2008). 

  18. Nature T Moore 421 370 2003 10.1038/nature01341 Moore, T. & Armstrong, K. M. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421, 370-373 (2003). 

  19. J. Neurophysiol. JD Schall 66 559 1991 10.1152/jn.1991.66.2.559 Schall, J. D. Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields. J. Neurophysiol. 66, 559-579 (1991). 

  20. Neuron B Zingg 93 33 2017 10.1016/j.neuron.2016.11.045 Zingg, B. et al. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93, 33-47 (2017). 

  21. Nat. Neurosci. CK Pfeffer 16 1068 2013 10.1038/nn.3446 Pfeffer, C. K., Xue, M., He, M., Huang, Z. J. & Scanziani, M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16, 1068-1076 (2013). 

  22. Cell A Saunders 174 1015 2018 10.1016/j.cell.2018.07.028 Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015-1030 e1016 (2018). 

  23. Nat. Neurosci. H Hintiryan 19 1100 2016 10.1038/nn.4332 Hintiryan, H. et al. The mouse cortico-striatal projectome. Nat. Neurosci. 19, 1100-1114 (2016). 

  24. Curr. Biol. H Terra 30 4188 2020 10.1016/j.cub.2020.08.031 Terra, H. et al. Prefrontal cortical projection neurons targeting dorsomedial striatum control behavioral inhibition. Curr. Biol. 30, 4188-4200 (2020). 

  25. J. Neurosci. VL Corbit 39 2965 2019 10.1523/JNEUROSCI.1728-18.2018 Corbit, V. L., Manning, E. E., Gittis, A. H. & Ahmari, S. E. Strengthened inputs from secondary motor cortex to striatum in a mouse model of compulsive behavior. J. Neurosci. 39, 2965-2975 (2019). 

  26. Neuron K Lee 93 1451 2017 10.1016/j.neuron.2017.02.033 Lee, K. et al. Parvalbumin interneurons modulate striatal output and enhance performance during associative learning. Neuron 93, 1451-1463 (2017). 

  27. J. Exp. Psychol. Hum. Percept. Perform. GD Logan 10 276 1984 10.1037/0096-1523.10.2.276 Logan, G. D., Cowan, W. B. & Davis, K. A. On the ability to inhibit simple and choice reaction time responses: a model and a method. J. Exp. Psychol. Hum. Percept. Perform. 10, 276-291 (1984). 

  28. eLife RD D’Souza 5 e19332 2016 10.7554/eLife.19332 D’Souza, R. D., Meier, A. M., Bista, P., Wang, Q. & Burkhalter, A. Recruitment of inhibition and excitation across mouse visual cortex depends on the hierarchy of interconnecting areas. eLife 5, e19332 (2016). 

  29. Neuron E Zagha 88 565 2015 10.1016/j.neuron.2015.09.044 Zagha, E., Ge, X. & McCormick, D. A. Competing neural ensembles in motor cortex gate goal-directed motor output. Neuron 88, 565-577 (2015). 

  30. Brain LK Fellows 128 788 2005 10.1093/brain/awh405 Fellows, L. K. & Farah, M. J. Is anterior cingulate cortex necessary for cognitive control? Brain 128, 788-796 (2005). 

  31. Nat. Neurosci. V de Lafuente 8 1698 2005 10.1038/nn1587 de Lafuente, V. & Romo, R. Neuronal correlates of subjective sensory experience. Nat. Neurosci. 8, 1698-1703 (2005). 

  32. Front. Neural Circuits HJ Rho 12 47 2018 10.3389/fncir.2018.00047 Rho, H. J., Kim, J. H. & Lee, S. H. Function of selective neuromodulatory projections in the mammalian cerebral cortex: comparison between cholinergic and noradrenergic systems. Front. Neural Circuits 12, 47 (2018). 

  33. Neuron A Thiele 97 769 2018 10.1016/j.neuron.2018.01.008 Thiele, A. & Bellgrove, M. A. Neuromodulation of attention. Neuron 97, 769-785 (2018). 

  34. Neuron SH Lee 76 209 2012 10.1016/j.neuron.2012.09.012 Lee, S. H. & Dan, Y. Neuromodulation of brain states. Neuron 76, 209-222 (2012). 

  35. Science H Hu 345 1255263 2014 10.1126/science.1255263 Hu, H., Gan, J. & Jonas, P. Interneurons. Fast-spiking, parvalbumin+ GABAergic interneurons: from cellular design to microcircuit function. Science 345, 1255263 (2014). 

  36. Front. Neural Circuits BR Ferguson 12 37 2018 10.3389/fncir.2018.00037 Ferguson, B. R. & Gao, W. J. PV interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front. Neural Circuits 12, 37 (2018). 

  37. Nat. Rev. Neurosci. JD Schall 2 33 2001 10.1038/35049054 Schall, J. D. Neural basis of deciding, choosing and acting. Nat. Rev. Neurosci. 2, 33-42 (2001). 

  38. Nat. Neurosci. G Maimon 9 948 2006 10.1038/nn1716 Maimon, G. & Assad, J. A. A cognitive signal for the proactive timing of action in macaque LIP. Nat. Neurosci. 9, 948-955 (2006). 

  39. Psychol. Sci. GF Woodman 19 128 2008 10.1111/j.1467-9280.2008.02058.x Woodman, G. F., Kang, M. S., Thompson, K. & Schall, J. D. The effect of visual search efficiency on response preparation: neurophysiological evidence for discrete flow. Psychol. Sci. 19, 128-136 (2008). 

  40. Neuron ZV Guo 81 179 2014 10.1016/j.neuron.2013.10.020 Guo, Z. V. et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 81, 179-194 (2014). 

  41. Neuron F Hu 104 1141 2019 10.1016/j.neuron.2019.09.019 Hu, F. et al. Prefrontal corticotectal neurons enhance visual processing through the superior colliculus and pulvinar thalamus. Neuron 104, 1141-1152 (2019). 

  42. Proc. Natl Acad. Sci. USA B Li 117 17278 2020 10.1073/pnas.2000523117 Li, B., Nguyen, T. P., Ma, C. & Dan, Y. Inhibition of impulsive action by projection-defined prefrontal pyramidal neurons. Proc. Natl Acad. Sci. USA 117, 17278-17287 (2020). 

  43. Curr. Opin. Behav. Sci. V Stuphorn 1 64 2015 10.1016/j.cobeha.2014.10.009 Stuphorn, V. Neural mechanisms of response inhibition. Curr. Opin. Behav. Sci. 1, 64-71 (2015). 

  44. Am. J. Psychiatry FG Moeller 158 1783 2001 10.1176/appi.ajp.158.11.1783 Moeller, F. G., Barratt, E. S., Dougherty, D. M., Schmitz, J. M. & Swann, A. C. Psychiatric aspects of impulsivity. Am. J. Psychiatry 158, 1783-1793 (2001). 

  45. Am. J. Psychiatry K Rubia 156 891 1999 10.1176/ajp.156.6.891 Rubia, K. et al. Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am. J. Psychiatry 156, 891-896 (1999). 

  46. Psychopharmacology (Berl). JD Jentsch 146 373 1999 10.1007/PL00005483 Jentsch, J. D. & Taylor, J. R. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl). 146, 373-390 (1999). 

  47. Brain Res. S Morein-Zamir 1628 117 2015 10.1016/j.brainres.2014.09.012 Morein-Zamir, S. & Robbins, T. W. Fronto-striatal circuits in response-inhibition: relevance to addiction. Brain Res. 1628, 117-129 (2015). 

  48. Psychiatry Res. A Gut-Fayand 102 65 2001 10.1016/S0165-1781(01)00250-5 Gut-Fayand, A. et al. Substance abuse and suicidality in schizophrenia: a common risk factor linked to impulsivity. Psychiatry Res. 102, 65-72 (2001). 

  49. Neuron JW Dalley 69 680 2011 10.1016/j.neuron.2011.01.020 Dalley, J. W., Everitt, B. J. & Robbins, T. W. Impulsivity, compulsivity, and top-down cognitive control. Neuron 69, 680-694 (2011). 

  50. Neuron DG Tervo 92 372 2016 10.1016/j.neuron.2016.09.021 Tervo, D. G. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372-382 (2016). 

  51. Neuron YH Song 93 940 2017 10.1016/j.neuron.2017.01.006 Song, Y. H. et al. A neural circuit for auditory dominance over visual perception. Neuron 93, 940-954 (2017). 

  52. Cell Rep. JH Song 31 107682 2020 10.1016/j.celrep.2020.107682 Song, J. H. et al. Precise mapping of single neurons by calibrated 3D reconstruction of brain slices reveals topographic projection in mouse visual cortex. Cell Rep. 31, 107682 (2020). 

  53. J. Neurosci. Methods L Hazan 155 207 2006 10.1016/j.jneumeth.2006.01.017 Hazan, L., Zugaro, M. & Buzsaki, G. Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization. J. Neurosci. Methods 155, 207-216 (2006). 

  54. Neuron D Kim 92 902 2016 10.1016/j.neuron.2016.09.023 Kim, D. et al. Distinct roles of parvalbumin- and somatostatin-expressing interneurons in working memory. Neuron 92, 902-915 (2016). 

  55. Nature D Kvitsiani 498 363 2013 10.1038/nature12176 Kvitsiani, D. et al. Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature 498, 363-366 (2013). 

  56. Nature NA Steinmetz 576 266 2019 10.1038/s41586-019-1787-x Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement across the mouse brain. Nature 576, 266-273 (2019). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로