최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nature communications, v.12 no.1, 2021년, pp.5206 -
Tong, Yaojun (The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark) , Jørgensen, Tue S. (The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark) , Whitford, Christopher M. (The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark) , Weber, Tilmann (The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark) , Lee, Sang Yup (The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark)
CRISPR base editing is a powerful method to engineer bacterial genomes. However, it restricts editing to single-nucleotide substitutions. Here, to address this challenge, we adapt a CRISPR-Prime Editing-based, DSB-free, versatile, and single-nucleotide resolution genetic manipulation toolkit for pro...
1. Costantino N Court DL Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants Proc. Natl Acad. Sci. USA 2003 100 15748 15753 10.1073/pnas.2434959100 14673109
2. Muyrers JP Zhang Y Testa G Stewart AF Rapid modification of bacterial artificial chromosomes by ET-recombination Nucleic Acids Res. 1999 27 1555 1557 10.1093/nar/27.6.1555 10037821
3. Wang HH Programming cells by multiplex genome engineering and accelerated evolution Nature 2009 460 894 898 10.1038/nature08187 19633652
4. Nyerges A A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species Proc. Natl Acad. Sci. USA 2016 113 2502 2507 10.1073/pnas.1520040113 26884157
5. Wannier TM Improved bacterial recombineering by parallelized protein discovery Proc. Natl Acad. Sci. USA 2020 117 13689 13698 10.1073/pnas.2001588117 32467157
6. Schubert, M. G. et al. High-throughput functional variant screens via in vivo production of single-stranded DNA. Proc. Natl Acad. Sci. USA 118 , e2018181118 (2021).
7. Barrangou R CRISPR provides acquired resistance against viruses in prokaryotes Science 2007 315 1709 1712 10.1126/science.1138140 17379808
8. Sander JD Joung JK CRISPR-Cas systems for editing, regulating and targeting genomes Nat. Biotechnol. 2014 32 347 355 10.1038/nbt.2842 24584096
9. Jinek M A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science 2012 337 816 821 10.1126/science.1225829 22745249
10. Kanaar R Hoeijmakers JHJ van Gent DC Molecular mechanisms of DNA double-strand break repair Trends Cell Biol. 1998 8 483 489 10.1016/S0962-8924(98)01383-X 9861670
11. Cui L Bikard D Consequences of Cas9 cleavage in the chromosome of Escherichia coli Nucleic Acids Res. 2016 44 4243 4251 10.1093/nar/gkw223 27060147
12. Hsu PD Lander ES Zhang F Development and applications of CRISPR-Cas9 for genome engineering Cell 2014 157 1262 1278 10.1016/j.cell.2014.05.010 24906146
13. Cho JS CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum Metab. Eng. 2017 42 157 167 10.1016/j.ymben.2017.06.010 28649005
14. Tong Y Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST Proc. Natl Acad. Sci. USA 2019 116 20366 20375 10.1073/pnas.1913493116 31548381
15. Gaudelli NM Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage Nature 2017 551 464 471 10.1038/nature24644 29160308
16. Banno S Nishida K Arazoe T Mitsunobu H Kondo A Deaminase-mediated multiplex genome editing in Escherichia coli Nat. Microbiol. 2018 3 423 429 10.1038/s41564-017-0102-6 29403014
17. Strecker J RNA-guided DNA insertion with CRISPR-associated transposases Science 2019 365 48 53 10.1126/science.aax9181 31171706
18. Klompe SE Vo PLH Halpin-Healy TS Sternberg SH Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration Nature 2019 571 219 225 10.1038/s41586-019-1323-z 31189177
19. Anzalone AV Search-and-replace genome editing without double-strand breaks or donor DNA Nature 2019 576 149 157 10.1038/s41586-019-1711-4 31634902
20. Lin Q Prime genome editing in rice and wheat Nat. Biotechnol. 2020 38 582 585 10.1038/s41587-020-0455-x 32393904
21. Scholz O Thiel A Hillen W Niederweis M Quantitative analysis of gene expression with an improved green fluorescent protein Eur. J. Biochem. 2000 267 1565 1570 10.1046/j.1432-1327.2000.01170.x 10712585
22. Warming S Costantino N Court DL Jenkins NA Copeland NG Simple and highly efficient BAC recombineering using galK selection Nucleic Acids Res. 2005 33 e36 10.1093/nar/gni035 15731329
23. Deatherage DE Barrick JE Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq Methods Mol. Biol. 2014 1151 165 188 10.1007/978-1-4939-0554-6_12 24838886
24. Khare, A. & Tavazoie, S. Multifactorial Competition and Resistance in a Two-Species Bacterial System. PLoS Genet. 11 , e1005715 (2015).
25. Lajoie MJ Gregg CJ Mosberg JA Washington GC Church GM Manipulating replisome dynamics to enhance lambda Red-mediated multiplex genome engineering Nucleic Acids Res. 2012 40 e170 e170 10.1093/nar/gks751 22904085
26. Wang J An improved recombineering approach by adding RecA to lambda Red recombination Mol. Biotechnol. 2006 32 43 53 10.1385/MB:32:1:043 16382181
27. Pyne ME Moo-Young M Chung DA Chou CP Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli Appl. Environ. Microbiol. 2015 81 5103 5114 10.1128/AEM.01248-15 26002895
28. Lee, H. J., Kim, H. J. & Lee, S. J. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs. Genome Res . 30 , 768?775 (2020).
29. Komor AC Kim YB Packer MS Zuris JA Liu DR Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage Nature 2016 533 420 424 10.1038/nature17946 27096365
30. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353 , aaf8729 (2016).
31. Zhao, D. et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39 , 35?40 (2020).
32. Kim YB Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions Nat. Biotechnol. 2017 35 371 376 10.1038/nbt.3803 28191901
33. Mitsunobu H Teramoto J Nishida K Kondo A Beyond native Cas9: manipulating genomic information and function Trends Biotechnol. 2017 35 983 996 10.1016/j.tibtech.2017.06.004 28739220
34. Walton RT Christie KA Whittaker MN Kleinstiver BP Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants Science 2020 368 290 296 10.1126/science.aba8853 32217751
35. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38 , 883?891 (2020).
36. Qi LS Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell 2013 152 1173 1183 10.1016/j.cell.2013.02.022 23452860
37. Hsu, J. Y. et al. PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nat. Commun. 12 , 1?6 (2021).
38. Rhodius VA Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters Mol. Syst. Biol. 2013 9 702 10.1038/msb.2013.58 24169405
39. Langmead B Salzberg SL Fast gapped-read alignment with Bowtie 2 Nat. Methods 2012 9 357 359 10.1038/nmeth.1923 22388286
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.