$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A versatile genetic engineering toolkit for E. coli based on CRISPR-prime editing 원문보기

Nature communications, v.12 no.1, 2021년, pp.5206 -   

Tong, Yaojun (The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark) ,  Jørgensen, Tue S. (The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark) ,  Whitford, Christopher M. (The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark) ,  Weber, Tilmann (The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark) ,  Lee, Sang Yup (The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark)

Abstract AI-Helper 아이콘AI-Helper

CRISPR base editing is a powerful method to engineer bacterial genomes. However, it restricts editing to single-nucleotide substitutions. Here, to address this challenge, we adapt a CRISPR-Prime Editing-based, DSB-free, versatile, and single-nucleotide resolution genetic manipulation toolkit for pro...

참고문헌 (39)

  1. 1. Costantino N Court DL Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants Proc. Natl Acad. Sci. USA 2003 100 15748 15753 10.1073/pnas.2434959100 14673109 

  2. 2. Muyrers JP Zhang Y Testa G Stewart AF Rapid modification of bacterial artificial chromosomes by ET-recombination Nucleic Acids Res. 1999 27 1555 1557 10.1093/nar/27.6.1555 10037821 

  3. 3. Wang HH Programming cells by multiplex genome engineering and accelerated evolution Nature 2009 460 894 898 10.1038/nature08187 19633652 

  4. 4. Nyerges A A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species Proc. Natl Acad. Sci. USA 2016 113 2502 2507 10.1073/pnas.1520040113 26884157 

  5. 5. Wannier TM Improved bacterial recombineering by parallelized protein discovery Proc. Natl Acad. Sci. USA 2020 117 13689 13698 10.1073/pnas.2001588117 32467157 

  6. 6. Schubert, M. G. et al. High-throughput functional variant screens via in vivo production of single-stranded DNA. Proc. Natl Acad. Sci. USA 118 , e2018181118 (2021). 

  7. 7. Barrangou R CRISPR provides acquired resistance against viruses in prokaryotes Science 2007 315 1709 1712 10.1126/science.1138140 17379808 

  8. 8. Sander JD Joung JK CRISPR-Cas systems for editing, regulating and targeting genomes Nat. Biotechnol. 2014 32 347 355 10.1038/nbt.2842 24584096 

  9. 9. Jinek M A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science 2012 337 816 821 10.1126/science.1225829 22745249 

  10. 10. Kanaar R Hoeijmakers JHJ van Gent DC Molecular mechanisms of DNA double-strand break repair Trends Cell Biol. 1998 8 483 489 10.1016/S0962-8924(98)01383-X 9861670 

  11. 11. Cui L Bikard D Consequences of Cas9 cleavage in the chromosome of Escherichia coli Nucleic Acids Res. 2016 44 4243 4251 10.1093/nar/gkw223 27060147 

  12. 12. Hsu PD Lander ES Zhang F Development and applications of CRISPR-Cas9 for genome engineering Cell 2014 157 1262 1278 10.1016/j.cell.2014.05.010 24906146 

  13. 13. Cho JS CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum Metab. Eng. 2017 42 157 167 10.1016/j.ymben.2017.06.010 28649005 

  14. 14. Tong Y Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST Proc. Natl Acad. Sci. USA 2019 116 20366 20375 10.1073/pnas.1913493116 31548381 

  15. 15. Gaudelli NM Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage Nature 2017 551 464 471 10.1038/nature24644 29160308 

  16. 16. Banno S Nishida K Arazoe T Mitsunobu H Kondo A Deaminase-mediated multiplex genome editing in Escherichia coli Nat. Microbiol. 2018 3 423 429 10.1038/s41564-017-0102-6 29403014 

  17. 17. Strecker J RNA-guided DNA insertion with CRISPR-associated transposases Science 2019 365 48 53 10.1126/science.aax9181 31171706 

  18. 18. Klompe SE Vo PLH Halpin-Healy TS Sternberg SH Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration Nature 2019 571 219 225 10.1038/s41586-019-1323-z 31189177 

  19. 19. Anzalone AV Search-and-replace genome editing without double-strand breaks or donor DNA Nature 2019 576 149 157 10.1038/s41586-019-1711-4 31634902 

  20. 20. Lin Q Prime genome editing in rice and wheat Nat. Biotechnol. 2020 38 582 585 10.1038/s41587-020-0455-x 32393904 

  21. 21. Scholz O Thiel A Hillen W Niederweis M Quantitative analysis of gene expression with an improved green fluorescent protein Eur. J. Biochem. 2000 267 1565 1570 10.1046/j.1432-1327.2000.01170.x 10712585 

  22. 22. Warming S Costantino N Court DL Jenkins NA Copeland NG Simple and highly efficient BAC recombineering using galK selection Nucleic Acids Res. 2005 33 e36 10.1093/nar/gni035 15731329 

  23. 23. Deatherage DE Barrick JE Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq Methods Mol. Biol. 2014 1151 165 188 10.1007/978-1-4939-0554-6_12 24838886 

  24. 24. Khare, A. & Tavazoie, S. Multifactorial Competition and Resistance in a Two-Species Bacterial System. PLoS Genet. 11 , e1005715 (2015). 

  25. 25. Lajoie MJ Gregg CJ Mosberg JA Washington GC Church GM Manipulating replisome dynamics to enhance lambda Red-mediated multiplex genome engineering Nucleic Acids Res. 2012 40 e170 e170 10.1093/nar/gks751 22904085 

  26. 26. Wang J An improved recombineering approach by adding RecA to lambda Red recombination Mol. Biotechnol. 2006 32 43 53 10.1385/MB:32:1:043 16382181 

  27. 27. Pyne ME Moo-Young M Chung DA Chou CP Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli Appl. Environ. Microbiol. 2015 81 5103 5114 10.1128/AEM.01248-15 26002895 

  28. 28. Lee, H. J., Kim, H. J. & Lee, S. J. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs. Genome Res . 30 , 768?775 (2020). 

  29. 29. Komor AC Kim YB Packer MS Zuris JA Liu DR Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage Nature 2016 533 420 424 10.1038/nature17946 27096365 

  30. 30. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353 , aaf8729 (2016). 

  31. 31. Zhao, D. et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39 , 35?40 (2020). 

  32. 32. Kim YB Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions Nat. Biotechnol. 2017 35 371 376 10.1038/nbt.3803 28191901 

  33. 33. Mitsunobu H Teramoto J Nishida K Kondo A Beyond native Cas9: manipulating genomic information and function Trends Biotechnol. 2017 35 983 996 10.1016/j.tibtech.2017.06.004 28739220 

  34. 34. Walton RT Christie KA Whittaker MN Kleinstiver BP Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants Science 2020 368 290 296 10.1126/science.aba8853 32217751 

  35. 35. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38 , 883?891 (2020). 

  36. 36. Qi LS Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell 2013 152 1173 1183 10.1016/j.cell.2013.02.022 23452860 

  37. 37. Hsu, J. Y. et al. PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nat. Commun. 12 , 1?6 (2021). 

  38. 38. Rhodius VA Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters Mol. Syst. Biol. 2013 9 702 10.1038/msb.2013.58 24169405 

  39. 39. Langmead B Salzberg SL Fast gapped-read alignment with Bowtie 2 Nat. Methods 2012 9 357 359 10.1038/nmeth.1923 22388286 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로