$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Surface state-induced barrierless carrier injection in quantum dot electroluminescent devices 원문보기

Nature communications, v.12 no.1, 2021년, pp.5669 -   

Lee, Hyeonjun (Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) ,  Jeong, Byeong Guk (SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 16419 Republic of Korea) ,  Bae, Wan Ki (SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 16419 Republic of Korea) ,  Lee, Doh C. (Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) ,  Lim, Jaehoon (Department of Energy Science, Centre for Artificial Atoms, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 16419 Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

The past decade has witnessed remarkable progress in the device efficiency of quantum dot light-emitting diodes based on the framework of organic-inorganic hybrid device structure. The striking improvement notwithstanding, the following conundrum remains underexplored: state-of-the-art devices with ...

참고문헌 (42)

  1. 1. Dai X Solution-processed, high-performance light-emitting diodes based on quantum dots Nature 2014 515 96 99 10.1038/nature13829 25363773 

  2. 2. Kim T Efficient and stable blue quantum dot light-emitting diode Nature 2020 586 385 389 10.1038/s41586-020-2791-x 33057219 

  3. 3. Won Y Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes Nature 2019 575 634 638 10.1038/s41586-019-1771-5 31776489 

  4. 4. Stouwdam JW Janssen RAJ Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers J. Mater. Chem. 2008 18 1889 1894 10.1039/b800028j 

  5. 5. Mashford BS High-efficiency quantum-dot light-emitting devices with enhanced charge injection Nat. Photonics 2013 7 407 412 10.1038/nphoton.2013.70 

  6. 6. Kwak J Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure Nano Lett. 2012 12 2362 2366 10.1021/nl3003254 22468609 

  7. 7. Xu T Highly simplified reddish orange phosphorescent organic light-emitting diodes incorporating a novel carrier-and exciton-confining spiro-exciplex-forming host for reduced efficiency roll-off ACS Appl. Mater. Interfaces 2017 9 2701 2710 10.1021/acsami.6b13077 28034314 

  8. 8. Lim J Park YS Wu K Yun HJ Klimov VI Droop-free colloidal quantum dot light-emitting diodes Nano Lett. 2018 18 6645 6653 10.1021/acs.nanolett.8b03457 30198267 

  9. 9. Bae WK Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes Nat. Commun. 2013 4 2661 10.1038/ncomms3661 24157692 

  10. 10. Schubert, E. F. Light-Emitting Diodes . (Cambridge University Press, 2006). 

  11. 11. Qian L Zheng Y Xue J Holloway PH Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures Nat. Photonics 2011 5 543 548 10.1038/nphoton.2011.171 

  12. 12. Luo H Origin of subthreshold turn-on in quantum-dot light-emitting diodes ACS Nano 2019 13 8229 8236 10.1021/acsnano.9b03507 31260258 

  13. 13. Yang Y High-efficiency light-emitting devices based on quantum dots with tailored nanostructures Nat. Photonics 2015 9 259 265 10.1038/nphoton.2015.36 

  14. 14. Acharya KP High efficiency quantum dot light emitting diodes from positive aging Nanoscale 2017 9 14451 14457 10.1039/C7NR05472F 28926075 

  15. 15. Hahm D Design principle for bright, robust, and color-pure InP/ZnSexS1–x/ZnS heterostructures Chem. Mater. 2019 31 3476 3484 10.1021/acs.chemmater.9b00740 

  16. 16. Xiang C High efficiency and stability of ink-jet printed quantum dot light emitting diodes Nat. Commun. 2020 11 1646 10.1038/s41467-020-15481-9 32242016 

  17. 17. Klimov VI McGuire JA Schaller RD Rupasov VI Scaling of multiexciton lifetimes in semiconductor nanocrystals Phys. Rev. B 2008 77 195324 10.1103/PhysRevB.77.195324 

  18. 18. Horowitz G Delannoy P Horowitz G Delannoy P An analytical model for organic-based thin-film transistors J. Appl. Phys. 1991 70 469 475 10.1063/1.350250 

  19. 19. Biswas S Kar S Chaudhuri S Optical and magnetic properties of manganese-incorporated zinc sulfide nanorods synthesized by a solvothermal process J. Phys. Chem. B 2005 109 17526 17530 10.1021/jp053138i 16853241 

  20. 20. Wang X Shi J Feng Z Li M Li C Visible emission characteristics from different defects of ZnS nanocrystals Phys. Chem. Chem. Phys. 2011 13 4715 4723 10.1039/c0cp01620a 21283840 

  21. 21. Anderson NC Hendricks MP Choi JJ Owen JS Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding J. Am. Chem. Soc. 2013 135 18536 18548 10.1021/ja4086758 24199846 

  22. 22. Janotti A de Van Walle CG Fundamentals of zinc oxide as a semiconductor Rep. Prog. Phys. 2009 72 126501 10.1088/0034-4885/72/12/126501 

  23. 23. Rinehart JD Schimpf AM Weaver AL Cohn AW Gamelin DR Photochemical electronic doping of colloidal CdSe nanocrystals J. Am. Chem. Soc. 2013 135 18782 18785 10.1021/ja410825c 24289732 

  24. 24. Somorjai, G. A. & Li, Y. Introduction to Surface Chemistry and Catalysis . (John Wiley & Sons, 2010). 

  25. 25. Zandi O Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals Nat. Mater. 2018 17 710 717 10.1038/s41563-018-0130-5 29988146 

  26. 26. Jäger L Schmidt TD Brütting W Manipulation and control of the interfacial polarization in organic light-emitting diodes by dipolar doping AIP Adv. 2016 6 095220 10.1063/1.4963796 

  27. 27. Wang X Amorphous ZnO/PbS quantum dots heterojunction for efficient responsivity broadband photodetectors ACS Appl. Mater. Interfaces 2020 12 8403 8410 10.1021/acsami.9b19486 31970987 

  28. 28. Sun FZ Efficient inverted polymer solar cells with thermal-evaporated and solution-processed small molecular electron extraction layer Appl. Phys. Lett. 2013 102 133303 10.1063/1.4799833 

  29. 29. Park JW Electron-injecting properties of Rb2CO3-doped Alq3 thin films in organic light-emitting diodes J. Vac. Sci. Technol. A 2013 31 031101 10.1116/1.4798302 

  30. 30. Ji W Ultrasonic spray processed, highly efficient all-inorganic quantum-dot light-emitting diodes ACS Photonics 2017 4 1271 1278 10.1021/acsphotonics.7b00216 

  31. 31. Okamura T Seki Y Nagakari S Okushi H Preparation of n-ZnO/p-Si heterojunction by sol-gel process Jpn. J. Appl. Phys. 1992 31 L762 10.1143/JJAP.31.L762 

  32. 32. Nowy S Ren W Elschner A Lövenich W Brütting W Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes J. Appl. Phys. 2010 107 054501 10.1063/1.3294642 

  33. 33. Mártil I Redondo E Ojeda A Influence of defects on the electrical and optical characteristics of blue light-emitting diodes based on III-V nitrides J. Appl. Phys. 1997 81 2442 2444 10.1063/1.364294 

  34. 34. Blood, P. Quantum Confined Laser Devices: Optical gain and Recombination in Semiconductors . (OUP Oxford, 2015). 

  35. 35. Qian L Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages Nano Today 2010 5 384 389 10.1016/j.nantod.2010.08.010 

  36. 36. Lim J Park YS Klimov VI Optical gain in colloidal quantum dots achieved with direct-current electrical pumping Nat. Mater. 2018 17 42 48 10.1038/nmat5011 29180770 

  37. 37. Shen H Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency Nat. Photonics 2019 13 192 197 10.1038/s41566-019-0364-z 

  38. 38. Crooker SA Hollingsworth JA Tretiak S Klimov VI Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials Phys. Rev. Lett. 2002 89 186802 10.1103/PhysRevLett.89.186802 12398626 

  39. 39. Vurgaftman I Meyer JR Ram-Mohan LR Band parameters for III-V compound semiconductors and their alloys J. Appl. Phys. 2001 89 5815 5875 10.1063/1.1368156 

  40. 40. He S-J Wang D-K Jiang N Zhang J Lu Z-H Auger-electron-stimulated organic electroluminescence at ultralow voltages below the energy gap Phys. Rev. Appl. 2015 3 054011 10.1103/PhysRevApplied.3.054011 

  41. 41. Lannoo M Delerue C Allan G Screening in semiconductor nanocrystallites and its consequences for porous silicon Phys. Rev. Lett. 1995 74 3415 3418 10.1103/PhysRevLett.74.3415 10058195 

  42. 42. Joo J Generalized and facile synthesis of semiconducting metal sulfide nanocrystals J. Am. Chem. Soc. 2003 125 11100 11105 10.1021/ja0357902 12952492 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로