$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Length of Pseudorandom Binary Sequence Required to Train Artificial Neural Network Without Overfitting 원문보기

IEEE access : practical research, open solutions, v.9, 2021년, pp.125358 - 125365  

Kim, Jongwan (Korea Advanced Institute of Science and Technology (KAIST), School of Electrical Engineering, Daejeon, South Korea) ,  Kim, Hoon (Korea Advanced Institute of Science and Technology (KAIST), School of Electrical Engineering, Daejeon, South Korea)

Abstract AI-Helper 아이콘AI-Helper

The artificial neural network (ANN) has been applied to the various fields due to its capability to process complicated nonlinear functions involving a large amount of data. A pseudorandom binary sequence (PRBS) is commonly used to train the ANN since the PRBS is easily generated by using a linear f...

참고문헌 (32)

  1. arXiv 1609 04747 An overview of gradient descent optimization algorithms ruder 2016 

  2. Neural Networks and Machine Learning Multilayer perceptrons haykin 2009 122 

  3. Machine Learning A Probabilistic Perspective Probability murphy 2012 27 

  4. Khan, Faisal Nadeem, Zhong, Kangping, Zhou, Xian, Al-Arashi, Waled Hussein, Yu, Changyuan, Lu, Chao, Lau, Alan Pak Tao. Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks. Optics express, vol.25, no.15, 17767-.

  5. Danshi Wang, Min Zhang, Ze Li, Jin Li, Meixia Fu, Yue Cui, Xue Chen. Modulation Format Recognition and OSNR Estimation Using CNN-Based Deep Learning. IEEE photonics technology letters : a publication of the IEEE Laser and Electro-optics Society, vol.29, no.19, 1667-1670.

  6. Zhenhua Dong, Khan, Faisal Nadeem, Qi Sui, Kangping Zhong, Chao Lu, Lau, Alan Pak Tao. Optical Performance Monitoring: A Review of Current and Future Technologies. Journal of lightwave technology : a joint IEEE/OSA publication, vol.34, no.2, 525-543.

  7. IEEE/OSA Journal of Optical Communications and Networking Convolutional neural network-based optical performance monitoring for optical transport networks tanimura 2019 10.1364/JOCN.11.000A52 11 52a 

  8. Chen, Xiaoliang, Li, Baojia, Proietti, Roberto, Zhu, Zuqing, Yoo, S. J. Ben. Self-Taught Anomaly Detection With Hybrid Unsupervised/Supervised Machine Learning in Optical Networks. Journal of lightwave technology : a joint IEEE/OSA publication, vol.37, no.7, 1742-1749.

  9. Jarajreh, Mutsam A., Giacoumidis, Elias, Aldaya, Ivan, Son Thai Le, Tsokanos, Athanasios, Ghassemlooy, Zabih, Doran, Nick J.. Artificial Neural Network Nonlinear Equalizer for Coherent Optical OFDM. IEEE photonics technology letters : a publication of the IEEE Laser and Electro-optics Society, vol.27, no.4, 387-390.

  10. Giacoumidis, Elias, Le, Son T., Ghanbarisabagh, Mohammad, McCarthy, Mary, Aldaya, Ivan, Mhatli, Sofien, Jarajreh, Mutsam A., Haigh, Paul A., Doran, Nick J., Ellis, Andrew D., Eggleton, Benjamin J.. Fiber nonlinearity-induced penalty reduction in CO-OFDM by ANN-based nonlinear equalization. Optics letters, vol.40, no.21, 5113-.

  11. 10.1364/OFC.2018.M2F.2 

  12. 10.1364/OFC.2018.M2B.2 

  13. Digital test patterns for performance measurements on digital transmission equipment 1992 

  14. 10.1364/OFC.2020.T4D.3 

  15. Hinton, G., Li Deng, Dong Yu, Dahl, G. E., Mohamed, A., Jaitly, N., Senior, Andrew, Vanhoucke, V., Nguyen, P., Sainath, T. N., Kingsbury, B.. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE signal processing magazine, vol.29, no.6, 82-97.

  16. Argyris, Apostolos, Bueno, Julián, Fischer, Ingo. Photonic machine learning implementation for signal recovery in optical communications. Scientific reports, vol.8, 8487-.

  17. Proc Adv Neural Inf Process Syst ImageNet classification with deep convolutional neural network krizhevsky 2012 1097 

  18. Proc Adv Neural Inf Process Syst Sequence to sequence learning with neural networks sutskever 2014 3104 

  19. Huang, Wei-Hsiang, Nguyen, Hong-Minh, Wang, Chung-Wen, Chan, Min-Chi, Wei, Chia-Chien, Chen, Jyehong, Taga, Hidenori, Tsuritani, Takehiro. Nonlinear Equalization Based on Artificial Neural Network in DML-Based OFDM Transmission Systems. Journal of lightwave technology : a joint IEEE/OSA publication, vol.39, no.1, 73-82.

  20. 10.1109/ICMLA.2007.27 

  21. Wen, Long, Li, Xinyu, Gao, Liang, Zhang, Yuyan. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method. IEEE transactions on industrial electronics : a publication of the IEEE Industrial Electronics Society, vol.65, no.7, 5990-5998.

  22. 10.1109/CVPR.2014.220 

  23. Nature Deep learning lecun 2015 10.1038/nature14539 521 436 

  24. Khan, Faisal Nadeem, Zhou, Yudi, Lau, Alan Pak Tao, Lu, Chao. Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks. Optics express, vol.20, no.11, 12422-.

  25. Ferrari, S., Stengel, R.F.. Smooth function approximation using neural networks. IEEE transactions on neural networks, vol.16, no.1, 24-38.

  26. 10.1109/IWADS.2002.1194667 

  27. 10.1109/ECOC.2018.8535327 

  28. Eriksson, Tobias A., Bulow, Henning, Leven, Andreas. Applying Neural Networks in Optical Communication Systems: Possible Pitfalls. IEEE photonics technology letters : a publication of the IEEE Laser and Electro-optics Society, vol.29, no.23, 2091-2094.

  29. Liao, Tao, Xue, Lei, Huang, Luyao, Hu, Weisheng, Yi, Lilin. Training data generation and validation for a neural network-based equalizer. Optics letters, vol.45, no.18, 5113-.

  30. 10.1109/ECOC.2018.8535400 

  31. Table of linear feedback shift registers ward 2012 

  32. Matsumoto, Makoto, Nishimura, Takuji. Mersenne twister : a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM transactions on modeling and computer simulation : a publication of the Association for Computing Machinery, vol.8, no.1, 3-30.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로