$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] PSAT-GAN: Efficient Adversarial Attacks Against Holistic Scene Understanding

IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, v.30, 2021년, pp.7541 - 7553  

Wang, Lin (Korea Advanced Institute of Science and Technology (KAIST), Visual Intelligence Laboratory, Daejeon, Republic of Korea) ,  Yoon, Kuk-Jin (Korea Advanced Institute of Science and Technology (KAIST), Visual Intelligence Laboratory, Daejeon, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Recent advances in deep neural networks (DNNs) have facilitated high-end applications, including holistic scene understanding (HSU), in which many tasks run in parallel with the same visual input. Following this trend, various methods have been proposed to use DNNs to perform multiple vision tasks. ...

참고문헌 (60)

  1. arXiv 1411 1784 Conditional generative adversarial nets mirza 2014 

  2. Proc Conf Neural Inf Process Syst Generative adversarial nets goodfellow 2014 2672 

  3. arXiv 1702 06280 On the (statistical) detection of adversarial examples grosse 2017 

  4. arXiv 1703 00410 Detecting adversarial samples from artifacts feinman 2017 

  5. Proc Int Conf Learn Represent Ensemble adversarial training: Attacks and defenses tramèr 2017 1 

  6. Proc Int Conf Learn Represent Towards deep learning models resistant to adversarial attacks madry 2018 1 

  7. arXiv 1710 00486 Deep-Safe: A data-driven approach for checking adversarial robustness in neural networks gopinath 2017 

  8. arXiv 1607 04311 Defensive distillation is not robust to adversarial examples carlini 2016 

  9. Proc 35th Int Conf Mach Learn Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples athalye 2018 274 

  10. Proc Int Conf Learn Represent PixelDefend: Leveraging generative models to understand and defend against adversarial examples song 2018 1 

  11. Proc IEEE Conf Comput Vis and Pattern Recog Evdistill: Asynchronous events to end-task learning via bidirectional reconstruction-guided cross-modal knowledge distillation wang 2021 608 

  12. Proc Conf Neural Inf Process Syst Cross-domain transferability of adversarial perturbations naseer 2019 12885 

  13. Proc Conf Neural Inf Process Syst Constructing unrestricted adversarial examples with generative models song 2018 8312 

  14. Wang, Lin, Cho, Wonjune, Yoon, Kuk-Jin. Deceiving Image-to-Image Translation Networks for Autonomous Driving With Adversarial Perturbations. IEEE robotics and automation letters, vol.5, no.2, 1421-1428.

  15. 10.1109/EuroSP.2016.36 

  16. Proc DLVP Fast scene understanding for autonomous driving neven 2017 1 

  17. 10.1109/CVPR.2018.00957 

  18. 10.1109/CVPR.2018.00465 

  19. ArXiv 1801 02612 Spatially transformed adversarial examples xiao 2018 

  20. arXiv 1703 09387 Adversarial transformation networks: Learning to generate adversarial examples baluja 2017 

  21. 10.24963/ijcai.2018/543 

  22. 10.1145/2996758.2996767 

  23. 10.24963/ijcai.2019/134 

  24. The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results everingham 2012 

  25. The PASCAL Visual Object Classes Challenge 2011 (VOC2011) Results everingham 2012 

  26. IEEE Trans Pattern Anal Mach Intell Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks wang 2021 

  27. 10.1109/CVPR.2019.00284 

  28. Su, Jiawei, Vargas, Danilo Vasconcellos, Sakurai, Kouichi. One Pixel Attack for Fooling Deep Neural Networks. IEEE transactions on evolutionary computation : a publication of the IEEE Neural Networks Council, vol.23, no.5, 828-841.

  29. 10.1109/ICCV.2017.244 

  30. Proc Int Conf Med Image Comput Comput -Assist Intervent U-Net: Convolutional networks for biomedical image segmentation ronneberger 2015 234 

  31. Proc Conf Neural Inf Process Syst Faster R-CNN: Towards real-time object detection with region proposal networks ren 2015 91 

  32. arXiv 1409 1556 Very deep convolutional networks for large-scale image recognition simonyan 2014 

  33. 10.1109/CVPR.2015.7298965 

  34. Proc 12th USENIX Workshop Offensive Technol (WOOT) Physical adversarial examples for object detectors song 2018 1 

  35. 10.1109/CVPR.2017.17 

  36. 10.1109/CVPR.2019.01032 

  37. Proc Int Conf Learn Represent Workshop Adversarial examples for semantic image segmentation fischer 2017 1 

  38. 10.1109/SP.2017.49 

  39. arXiv 1312 6199 Intriguing properties of neural networks szegedy 2013 

  40. Perturbation Optimization and Statistics Adversarial perturbations of deep neural networks warde-farley 2016 311 

  41. 10.1109/ICCV.2017.300 

  42. arXiv 1707 05572 [cs] Fast feature fool: A data independent approach to universal adversarial perturbations mopuri 2017 

  43. Proc Int Conf Learn Represent Adversarial examples in the physical world kurakin 2017 1 

  44. 10.1109/CVPR.2016.282 

  45. 10.1109/ICESS.2019.8782514 

  46. arXiv 1412 6572 Explaining and harnessing adversarial examples goodfellow 2014 

  47. Proc Eur Conf Mach Learn Knowl Discovery Databases ShapeShifter: Robust physical adversarial attack on faster R-CNN object detector chen 2018 52 

  48. 10.1109/CVPR.2018.00175 

  49. arXiv 1606 04435 Adversarial perturbations against deep neural networks for malware classification grosse 2016 

  50. 10.1109/SP.2016.41 

  51. Wang, Qianqian, Ding, Zhengming, Tao, Zhiqiang, Gao, Quanxue, Fu, Yun. Generative Partial Multi-View Clustering With Adaptive Fusion and Cycle Consistency. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.30, 1771-1783.

  52. 10.1109/ICCV.2017.153 

  53. 10.1007/978-3-030-01219-9_11 

  54. Proc Adv Neural Inf Process Syst Coupled generative adversarial networks liu 2016 469 

  55. Jiang, Songyao, Tao, Zhiqiang, Fu, Yun. Geometrically Editable Face Image Translation With Adversarial Networks. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.30, 2771-2783.

  56. 10.1109/CVPR42600.2020.00834 

  57. Proc Conf Neural Inf Process Syst InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets chen 2016 2172 

  58. Proc Adv Neural Inf Process Syst Improved training of Wasserstein GANs gulrajani 2017 5767 

  59. 10.1109/CVPR.2018.00916 

  60. arXiv 1703 10717 BEGAN: Boundary equilibrium generative adversarial networks berthelot 2017 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로