$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Targeted Metabolic and In-Silico Analyses Highlight Distinct Glucosinolates and Phenolics Signatures in Korean Rapeseed Cultivars 원문보기

Plants, v.10 no.10, 2021년, pp.2027 -   

Kim, Joonyup (Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea) ,  Sohn, Soo In (aajkhaskheli@gmail.com) ,  Sathasivam, Ramaraj (Biosafety Division, Department of Agricultural Biotechnology, Jeonju 54874, Korea) ,  Khaskheli, Allah Jurio (sisohn@korea.kr) ,  Kim, Min Cheol (Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea) ,  Kim, Nam Su (ramarajbiotech@gmail.com (R.S.)) ,  Park, Sang Un (mincheol2641@naver.com (M.C.K.))

Abstract AI-Helper 아이콘AI-Helper

Rapeseed is an economically important oilseed crop throughout the world. We examined the content and composition of glucosinolates (GSLs) and phenolics in the sprouts of seven Korean cultivars. A total of eight GSLs that include four aliphatic GSLs (AGSLs) (progoitrin, gluconapin, gluconapoleiferin,...

Keyword

참고문헌 (58)

  1. 1. Bennouna D. Tourniaire F. Durand T. Galano J.-M. Fine F. Fraser K. Benatia S. Rosique C. Pau C. Couturier C. The Brassica napus (oilseed rape) seeds bioactive health effects are modulated by agronomical traits as assessed by a mul-ti-scale omics approach in the metabolically impaired ob-mouse Food Chem. Mol. Sci. 2021 2 100011 10.1016/j.fochms.2021.100011 

  2. 2. Salehi B. Quispe C. Butnariu M. Sarac I. Marmouzi I. Kamle M. Tripathi V. Kumar P. Bouyahya A. Capanoglu E. Phytotherapy and food applications from Brassica genus Phytother. Res. 2021 35 3590 3609 10.1002/ptr.7048 33666283 

  3. 3. Jahangir M. Kim H.K. Choi Y.H. Verpoorte R. Health-Affecting Compounds in Brassicaceae Compr. Rev. Food Sci. Food Saf. 2009 8 31 43 10.1111/j.1541-4337.2008.00065.x 

  4. 4. Yang L. Wen K.-S. Ruan X. Zhao Y.-X. Wei F. Wang Q. Response of Plant Secondary Metabolites to Environmental Factors Molecules 2018 23 762 10.3390/molecules23040762 29584636 

  5. 5. Tzin V. Galili G. The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis thaliana Arab. Book 2010 8 e0132 10.1199/tab.0132 22303258 

  6. 6. Pott D.M. Osorio S. Vallarino J.G. From Central to Specialized Metabolism: An Overview of Some Secondary Compounds Derived from the Primary Metabolism for Their Role in Conferring Nutritional and Organoleptic Characteristics to Fruit Front. Plant Sci. 2019 10 835 10.3389/fpls.2019.00835 31316537 

  7. 7. Rangkadilok N. E Nicolas M. Bennett R.N. Premier R.R. Eagling D.R. Taylor P. Developmental changes of sinigrin and glucoraphanin in three Brassica species ( Brassica nigra , Brassica juncea and Brassica oleracea var. italica) Sci. Hortic. 2002 96 11 26 10.1016/S0304-4238(02)00118-8 

  8. 8. Guerriero G. Berni R. Muñoz-Sánchez J.A. Apone F. Abdel-Salam E.M. Qahtan A.A. Alatar A.A. Cantini C. Cai G. Hausman J.-F. Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists Genes 2018 9 309 10.3390/genes9060309 

  9. 9. Sønderby I.E. Geu-Flores F. Halkier B. Biosynthesis of glucosinolates—Gene discovery and beyond Trends Plant Sci. 2010 15 283 290 10.1016/j.tplants.2010.02.005 20303821 

  10. 10. Cartea M.E. Francisco M. Soengas P. Velasco P. Phenolic Compounds in Brassica Vegetables Molecules 2010 16 251 280 10.3390/molecules16010251 21193847 

  11. 11. Cao Q. Wang G. Peng Y. A Critical Review on Phytochemical Profile and Biological Effects of Turnip ( Brassica rapa L.) Front. Nutr. 2021 8 721733 10.3389/fnut.2021.721733 34395503 

  12. 12. Tiwari R. Rana C. Plant secondary metabolites: A review Int. J. Eng. Res. Gen. 2015 3 661 670 

  13. 13. Fahey J.W. Zalcmann A.T. Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants Phytochemistry 2001 56 5 51 10.1016/S0031-9422(00)00316-2 11198818 

  14. 14. Plaszkó T. Szűcs Z. Vasas G. Gonda S. Effects of Glucosinolate-Derived Isothiocyanates on Fungi: A Comprehensive Review on Direct Effects, Mechanisms, Structure-Activity Relationship Data and Possible Agricultural Applications J. Fungi 2021 7 539 10.3390/jof7070539 34356918 

  15. 15. Vaughn S.F. Glucosilates as natural pesticides Biologically Active Natural Products: Agrochemicals CRC Press Boca Raton, FL, USA 1999 81 91 

  16. 16. Ishida M. Hara M. Fukino N. Kakizaki T. Morimitsu Y. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables Breed. Sci. 2014 64 48 59 10.1270/jsbbs.64.48 24987290 

  17. 17. Herr I. Büchler M.W. Dietary constituents of broccoli and other cruciferous vegetables: Implications for prevention and therapy of cancer Cancer Treat. Rev. 2010 36 377 383 10.1016/j.ctrv.2010.01.002 20172656 

  18. 18. Heber D. Vegetables, fruits and phytoestrogens in the prevention of diseases J. Postgrad. Med. 2004 50 145 149 15235216 

  19. 19. Higdon J.V. Delage B. Williams D.E. Dashwood R.H. Cruciferous vegetables and human cancer risk: Epidemiologic evi-dence and mechanistic basis Pharmacol. Res. 2007 55 224 236 10.1016/j.phrs.2007.01.009 17317210 

  20. 20. Shock T. Badang L. Ferguson B. Martinez-Guryn K. The interplay between diet, gut microbes, and host epigenetics in health and disease J. Nutr. Biochem. 2021 95 108631 10.1016/j.jnutbio.2021.108631 33789148 

  21. 21. Ernst W. Ecological aspects of sulfur in higher plants: The impact of SO2 and the evolution of the biosynthesis of organic sul-fur compounds on populations and ecosystems Sulfur Nutrition and Sulfur Assimilation in Higher Plants: Regulatory, Agri-Cultural and Environmental Aspects De Kok L.J. Stulen I. Rennenberg H. Brunold C. Rauser W. SPB Academic Publishing The Hague, The Netherlands 1993 295 313 

  22. 22. Schnug E. Physiological functions and environmental relevance of sulfur-containing secondary metabolites Sulfur Nutrition and Sulfur Assimilation in Higher Plant; Regulatory Agricultural and Environmental Aspects De Kok L.J. Stulen I. Rennenberg H. Brunold C. Rauser W. SPB Academic Publishing The Hague, The Netherlands 1993 179 190 

  23. 23. Del Carmen Martínez-Ballesta M. Moreno D.A. Carvajal M. The physiological importance of glucosinolates on plant re-sponse to abiotic stress in Brassica Int. J. Mol. Sci. 2013 14 11607 11625 10.3390/ijms140611607 23722664 

  24. 24. Dixon R.A. Paiva N.L. Stress-induced phenylpropanoid metabolism Plant Cell 1995 7 1085 10.2307/3870059 12242399 

  25. 25. Bennett R.N. Wallsgrove R.M. Secondary metabolites in plant defence mechanisms New Phytol. 1994 127 617 633 10.1111/j.1469-8137.1994.tb02968.x 33874382 

  26. 26. Isah T. Stress and defense responses in plant secondary metabolites production Biol. Res. 2019 52 1 25 10.1186/s40659-019-0246-3 30612577 

  27. 27. Cai Y. Luo Q. Sun M. Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer Life Sci. 2004 74 2157 2184 10.1016/j.lfs.2003.09.047 14969719 

  28. 28. Tiwari U. Cummins E. Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations Food Res. Int. 2013 50 497 506 10.1016/j.foodres.2011.09.007 

  29. 29. Ayaz F.A. Hayırlıoglu-Ayaz S. Alpay-Karaoglu S. Grúz J. Valentová K. Ulrichová J. Strnad M. Phenolic acid contents of kale ( Brassica oleraceae L. var. acephala DC.) extracts and their antioxidant and antibacterial activities Food Chem. 2008 107 19 25 10.1016/j.foodchem.2007.07.003 

  30. 30. Park C.H. Kim N.S. Park J.S. Lee S.Y. Lee J.-W. Park S.U. Effects of light-emitting diodes on the accumulation of glu-cosinolates and phenolic compounds in sprouting canola ( Brassica napus L.) Foods 2019 8 76 10.3390/foods8020076 

  31. 31. Avato P. Argentieri M.P. Brassicaceae: A rich source of health improving phytochemicals Phytochem. Rev. 2015 14 1019 1033 10.1007/s11101-015-9414-4 

  32. 32. Björkman M. Klingen I. Birch A.N. Bones A.M. Bruce T.J. Johansen T.J. Meadow R. Mølmann J. Seljåsen R. Smart L.E. Phytochemicals of Brassicaceae in plant protection and human health–Influences of climate, environment and agro-nomic practice Phytochemistry 2011 72 538 556 10.1016/j.phytochem.2011.01.014 21315385 

  33. 33. Wittkop B. Snowdon R.J. Friedt W. Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe Euphytica 2009 170 131 10.1007/s10681-009-9940-5 

  34. 34. De Pascale S. Maggio A. Pernice R. Fogliano V. Barbieri G. Sulphur fertilization may improve the nutritional value of Brassica rapa L. subsp. sylvestris Eur. J. Agron. 2007 26 418 424 10.1016/j.eja.2006.12.009 

  35. 35. Li J. Zhu Z. Gerendás J. Effects of Nitrogen and Sulfur on Total Phenolics and Antioxidant Activity in Two Genotypes of Leaf Mustard J. Plant Nutr. 2008 31 1642 1655 10.1080/01904160802244860 

  36. 36. Brown P.D. Morra M.J. Hydrolysis products of glucosinolates in Brassica napus tissues as inhibitors of seed germination Plant Soil 1996 181 307 316 10.1007/BF00012065 

  37. 37. Vierheilig H. Bennett R. Kiddle G. Kaldorf M. Ludwig-Müller J. Differences in glucosinolate patterns and arbuscular mycorrhizal status of glucosinolate-containing plant species New Phytol. 2000 146 343 352 10.1046/j.1469-8137.2000.00642.x 33862976 

  38. 38. Yasumoto S. Matsuzaki M. Hirokane H. Okada K. Glucosinolate content in rapeseed in relation to suppression of subse-quent crop Plant Prod. Sci. 2010 13 150 155 10.1626/pps.13.150 

  39. 39. Shahidi F. Gabon J.E. Individual glucosinolates in six canola varieties J. Food Qual. 1989 11 421 431 10.1111/j.1745-4557.1989.tb00905.x 

  40. 40. Appelqvist L.-A. Chemical constituents of rapeseed Rapeseed Appelqvist L. Ohlson R. Elsevier Publishing Co. Amsterdam, The Netherlands 1972 123 173 

  41. 41. Jiang J. Zhang C. Wang X. Ligand perception, activation, and early signaling of plant steroid receptor brassinosteroid in-sensitive 1 J. Integr. Plant Biol. 2013 55 1198 1211 10.1111/jipb.12081 23718739 

  42. 42. Auger B. Marnet N. Gautier V. Maia-Grondard A. Leprince F. Renard M. Guyot S. Nesi N. Routaboul J.-M. A de-tailed survey of seed coat flavonoids in developing seeds of Brassica napus L. J. Agric. Food Chem. 2010 58 6246 6256 10.1021/jf903619v 20429588 

  43. 43. Li X. Westcott N. Links M. Gruber M.Y. Seed Coat Phenolics and the Developing Silique Transcriptome of Brassica carinata J. Agric. Food Chem. 2010 58 10918 10928 10.1021/jf102208a 20925379 

  44. 44. Marles M. Gruber M.Y. Scoles G.J. Muir A.D. Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus Phytochemistry 2003 62 663 672 10.1016/S0031-9422(02)00488-0 12620317 

  45. 45. Jiang J. Shao Y. Yanlin S. Lu C. Zhang Y. Wang Y. Phenolic Composition Analysis and Gene Expression in Developing Seeds of Yellow- and Black-seeded Brassica napus J. Integr. Plant Biol. 2013 55 537 551 10.1111/jipb.12039 23445079 

  46. 46. Chhajed S. Mostafa I. He Y. Abou-Hashem M. El-Domiaty M. Chen S. Glucosinolate biosynthesis and the glucosin-olate–myrosinase system in plant defense Agronomy 2020 10 1786 10.3390/agronomy10111786 

  47. 47. Harun S. Abdullah-Zawawi M.-R. Goh H.-H. Mohamed-Hussein Z.-A. A comprehensive gene inventory for glucosin-olate biosynthetic pathway in Arabidopsis thaliana J. Agric. Food Chem. 2020 68 7281 7297 10.1021/acs.jafc.0c01916 32551569 

  48. 48. Koornneef M. Meinke D. The development of Arabidopsis as a model plant Plant J. 2010 61 909 921 10.1111/j.1365-313X.2009.04086.x 20409266 

  49. 49. Petersen A. Wang C. Crocoll C. Halkier B.A. Biotechnological approaches in glucosinolate production J. Integr. Plant Biol. 2018 60 1231 1248 10.1111/jipb.12705 30080309 

  50. 50. Bell L. The Biosynthesis of Glucosinolates: Insights, Inconsistencies, and Unknowns Annu. Plant Rev. Online 2019 2 969 1000 

  51. 51. Nguyen V.P.T. Stewart J. Lopez M. Ioannou I. Allais F. Glucosinolates: Natural Occurrence, Biosynthesis, Accessibility, Isolation, Structures, and Biological Activities Molecules 2020 25 4537 10.3390/molecules25194537 33022970 

  52. 52. Zhang Y. Li B. Huai D. Zhou Y. Kliebenstein D.J. The conserved transcription factors, MYB115 and MYB118, control expression of the newly evolved benzoyloxy glucosinolate pathway in Arabidopsis thaliana Front. Plant Sci. 2015 6 343 10.3389/fpls.2015.00343 26029237 

  53. 53. Randhir R. Lin Y.-T. Shetty K. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors Process. Biochem. 2004 39 637 646 10.1016/S0032-9592(03)00197-3 

  54. 54. Lin D. Xiao M. Zhao J. Li Z. Xing B. Li X. Kong M. Li L. Zhang Q. Liu Y. An overview of plant phenolic com-pounds and their importance in human nutrition and management of type 2 diabetes Molecules 2016 21 1374 10.3390/molecules21101374 27754463 

  55. 55. Chhon S. Jeon J. Kim J. Park S.U. Accumulation of Anthocyanins through Overexpression of AtPAP1 in Solanum nigrum Lin. (Black Nightshade) Biomolecules 2020 10 277 10.3390/biom10020277 32054115 

  56. 56. Yeo H.J. Baek S.-A. Sathasivam R. Kim J.K. Park S.U. Metabolomic analysis reveals the interaction of primary and sec-ondary metabolism in white, pale green, and green pak choi ( Brassica rapa subsp. chinensis) Appl. Biol. Chem. 2021 64 1 16 10.1186/s13765-020-00574-2 

  57. 57. Kim J.K. Bong S.J. Park S.U. Amino Acids Content in Different Korean Cultivars of Rapeseed ( Brassica napus ) Asian J. Chem. 2017 29 1423 1426 10.14233/ajchem.2017.20453 

  58. 58. Pang Z. Chong J. Zhou G. Morais D.A.D.L. Chang L. Barrette M. Gauthier C. Jacques P. Li S. Xia J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights Nucleic Acids Res. 2021 49 W388 W396 10.1093/nar/gkab382 34019663 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로