$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Copolymer‐Based Flexible Resistive Random Access Memory Prepared by Initiated Chemical Vapor Deposition Process

Advanced electronic materials, v.7 no.10, 2021년, pp.2100375 -   

Jeong, Jaejoong (School of Electrical Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea) ,  Kim, Min Ju (School of Electrical Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea) ,  Hwang, Wan Sik (Department of Materials Engineering Korea Aerospace University Goyang Gyeonggi‐) ,  Cho, Byung Jin (do 10540 Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

AbstractOne of the essential components in this era of the Internet of Things (IoT) and wearable technologies, is a flexible and high performance resistive random access memory (ReRAM) device. In this paper, the authors propose a new copolymer‐based ReRAM device that is realized using an init...

참고문헌 (42)

  1. Han, Su‐Ting, Peng, Haiyan, Sun, Qijun, Venkatesh, Shishir, Chung, Kam‐Sing, Lau, Siu Chuen, Zhou, Ye, Roy, V. A. L.. An Overview of the Development of Flexible Sensors. Advanced materials, vol.29, no.33, 1700375-.

  2. Cai, Sa, Xu, Xiaojie, Yang, Wei, Chen, Jiaxin, Fang, Xiaosheng. Materials and Designs for Wearable Photodetectors. Advanced materials, vol.31, no.18, 1808138-.

  3. Yang. Multi-tier computing networks for intelligent IoT. Nature electronics, vol.2, no.1, 4-5.

  4. Shi, Wei, Guo, Yunlong, Liu, Yunqi. When Flexible Organic Field‐Effect Transistors Meet Biomimetics: A Prospective View of the Internet of Things. Advanced materials, vol.32, no.15, 1901493-.

  5. Yang, Yuxi, Gao, Wenxiu, Xie, Zhongshuai, Wang, Yaojin, Yuan, Guoliang, Liu, Jun‐Ming. An All‐Inorganic, Transparent, Flexible, and Nonvolatile Resistive Memory. Advanced electronic materials, vol.4, no.12, 1800412-.

  6. Kalasin, Surachate, Sangnuang, Pantawan, Khownarumit, Porntip, Tang, I. Ming, Surareungchai, Werasak. Salivary Creatinine Detection Using a Cu(I)/Cu(II) Catalyst Layer of a Supercapacitive Hybrid Sensor: A Wireless IoT Device To Monitor Kidney Diseases for Remote Medical Mobility. ACS biomaterials science & engineering, vol.6, no.10, 5895-5910.

  7. Proc. 2014 Int. Symp. Low Power Electron. Des. Jayakumar H. 375 2014 10.1145/2627369.2631644 

  8. Hussain, Aftab M., Hussain, Muhammad M.. CMOS‐Technology‐Enabled Flexible and Stretchable Electronics for Internet of Everything Applications. Advanced materials, vol.28, no.22, 4219-4249.

  9. Ghoneim, Mohamed, Hussain, Muhammad. Review on Physically Flexible Nonvolatile Memory for Internet of Everything Electronics. Electronics, vol.4, no.3, 424-479.

  10. Lee, Han Eol, Park, Jung Hwan, Kim, Tae Jin, Im, Doyoung, Shin, Jung Ho, Kim, Do Hyun, Mohammad, Baker, Kang, Il‐Suk, Lee, Keon Jae. Novel Electronics for Flexible and Neuromorphic Computing. Advanced functional materials, vol.28, no.32, 1801690-.

  11. Park, Hea‐Lim, Lee, Yeongjun, Kim, Naryung, Seo, Dae‐Gyo, Go, Gyeong‐Tak, Lee, Tae‐Woo. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics. Advanced materials, vol.32, no.15, 1903558-.

  12. Yang, J. Joshua, Strukov, Dmitri B., Stewart, Duncan R.. Memristive devices for computing. Nature nanotechnology, vol.8, no.1, 13-24.

  13. Qian, Min, Pan, Yiming, Liu, Fengyuan, Wang, Miao, Shen, Haoliang, He, Daowei, Wang, Baigeng, Shi, Yi, Miao, Feng, Wang, Xinran. Tunable, Ultralow‐Power Switching in Memristive Devices Enabled by a Heterogeneous Graphene–Oxide Interface. Advanced materials, vol.26, no.20, 3275-3281.

  14. Tian, He, Chen, Hong-Yu, Gao, Bin, Yu, Shimeng, Liang, Jiale, Yang, Yi, Xie, Dan, Kang, Jinfeng, Ren, Tian-Ling, Zhang, Yuegang, Wong, H.-S. Philip. Monitoring Oxygen Movement by Raman Spectroscopy of Resistive Random Access Memory with a Graphene-Inserted Electrode. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.13, no.2, 651-657.

  15. Yoon, Jung Ho, Zhang, Jiaming, Lin, Peng, Upadhyay, Navnidhi, Yan, Peng, Liu, Yuzi, Xia, Qiangfei, Yang, J. Joshua. A Low‐Current and Analog Memristor with Ru as Mobile Species. Advanced materials, vol.32, no.9, 1904599-.

  16. Chand, Umesh, Kuan-Chang Huang, Chun-Yang Huang, Tseung-Yuen Tseng. Mechanism of Nonlinear Switching in HfO2-Based Crossbar RRAM With Inserting Large Bandgap Tunneling Barrier Layer. IEEE transactions on electron devices, vol.62, no.11, 3665-3670.

  17. Li, Naifeng, Wang, Yue, Sun, Haifeng, Hu, Junjie, Zheng, Maoyuan, Ye, Sihao, Wang, Qi, Li, Yingtao, He, Deyan, Wang, Jiatai, Zhang, Guangan, Qi, Jing. Resistive switching behaviors and mechanisms of HfS2 film memory devices studied by experiments and density functional theory calculations. Applied physics letters, vol.116, no.6, 063503-.

  18. Rahaman, Sk. Ziaur, Lin, Yu-De, Lee, Heng-Yuan, Chen, Yu-Sheng, Chen, Pang-Shiu, Chen, Wei-Su, Hsu, Chien-Hua, Tsai, Kan-Hsueh, Tsai, Ming-Jinn, Wang, Pei-Hua. The Role of Ti Buffer Layer Thickness on the Resistive Switching Properties of Hafnium Oxide-Based Resistive Switching Memories. Langmuir : the ACS journal of surfaces and colloids, vol.33, no.19, 4654-4665.

  19. Eskandari, Farzane, Shabani, Pejman, Yousefi, Ramin. Simultaneous protonation/deprotonation mechanism in polyaniline-based devices as complementary resistive switches. Organic electronics, vol.79, 105628-.

  20. Gao, Shuang, Zeng, Fei, Chen, Chao, Tang, Guangsheng, Lin, Yisong, Zheng, Zifeng, Song, Cheng, Pan, Feng. Conductance quantization in a Ag filament-based polymer resistive memory. Nanotechnology, vol.24, no.33, 335201-.

  21. Bhansali, Unnat S., Khan, Mohd A., Cha, Dongkyu, AlMadhoun, Mahmoud N., Li, Ruipeng, Chen, Long, Amassian, Aram, Odeh, Ihab N., Alshareef, Husam N.. Metal-Free, Single-Polymer Device Exhibits Resistive Memory Effect. ACS nano, vol.7, no.12, 10518-10524.

  22. Lin, Wen‐Peng, Liu, Shu‐Juan, Gong, Tao, Zhao, Qiang, Huang, Wei. Polymer‐Based Resistive Memory Materials and Devices. Advanced materials, vol.26, no.4, 570-606.

  23. Lee, Byung-Hyun, Bae, Hagyoul, Seong, Hyejeong, Lee, Dong-Il, Park, Hongkeun, Choi, Young Joo, Im, Sung-Gap, Kim, Sang Ouk, Choi, Yang-Kyu. Direct Observation of a Carbon Filament in Water-Resistant Organic Memory. ACS nano, vol.9, no.7, 7306-7313.

  24. Jang, Byung Chul, Seong, Hyejeong, Kim, Sung Kyu, Kim, Jong Yun, Koo, Beom Jun, Choi, Junhwan, Yang, Sang Yoon, Im, Sung Gap, Choi, Sung-Yool. Flexible Nonvolatile Polymer Memory Array on Plastic Substrate via Initiated Chemical Vapor Deposition. ACS applied materials & interfaces, vol.8, no.20, 12951-12958.

  25. Moon, Hanul, Seong, Hyejeong, Shin, Woo Cheol, Park, Won-Tae, Kim, Mincheol, Lee, Seungwon, Bong, Jae Hoon, Noh, Yong-Young, Cho, Byung Jin, Yoo, Seunghyup, Im, Sung Gap. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. Nature materials, vol.14, no.6, 628-635.

  26. Tenhaeff, Wyatt E., Gleason, Karen K.. Initiated and Oxidative Chemical Vapor Deposition of Polymeric Thin Films: iCVD and oCVD. Advanced functional materials, vol.18, no.7, 979-992.

  27. Yu, Seung Jung, Pak, Kwanyong, Kwak, Moo Jin, Joo, Munkyu, Kim, Bong Jun, Oh, Myung Seok, Baek, Jieung, Park, Hongkeun, Choi, Goro, Kim, Do Heung, Choi, Junhwan, Choi, Yunho, Shin, Jihye, Moon, Heeyeon, Lee, Eunjung, Im, Sung Gap. Initiated Chemical Vapor Deposition: A Versatile Tool for Various Device Applications. Advanced engineering materials, vol.20, no.3, 1700622-.

  28. Kim, Min Ju, Pak, Kwanyong, Hwang, Wan Sik, Im, Sung Gap, Cho, Byung Jin. Novel Vapor-Phase Synthesis of Flexible, Homogeneous Organic-Inorganic Hybrid Gate Dielectric with sub 5 nm Equivalent Oxide Thickness. ACS applied materials & interfaces, vol.10, no.43, 37326-37334.

  29. Kim, Min Ju, Pak, Kwanyong, Choi, Junhwan, Lee, Tae In, Hwang, Wan Sik, Im, Sung Gap, Cho, Byung Jin. Ultrathin ZrOx-Organic Hybrid Dielectric (EOT 3.2 nm) via Initiated Chemical Vapor Deposition for High-Performance Flexible Electronics. ACS applied materials & interfaces, vol.11, no.47, 44513-44520.

  30. Lee, Sangyun, Koo, Bonwon, Shin, Joonghan, Lee, Eunkyong, Park, Hyunjeong, Kim, Hyoungsub. Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance. Applied physics letters, vol.88, no.16, 162109-.

  31. Kajii, Hirotake, Okuya, Hiroshi, Sakakibara, Akinori, Fukuda, Shohei, Ogata, Toshiyuki, Takahashi, Motoki, Ohmori, Yutaka. Effect of Hydroxyl Group of Polymer Gate Insulators on Characteristics of Dihexylsexithiophene Organic Field-Effect Transistors Using Poly(p-silsesquioxane) Derivatives. Japanese journal of applied physics, vol.47, no.2, 1311-.

  32. Wong, H.-S. Philip, Lee, Heng-Yuan, Yu, Shimeng, Chen, Yu-Sheng, Wu, Yi, Chen, Pang-Shiu, Lee, Byoungil, Chen, Frederick T., Tsai, Ming-Jinn. Metal–Oxide RRAM. Proceedings of the IEEE, vol.100, no.6, 1951-1970.

  33. Yongbian Kuang, Ru Huang, Yu Tang, Wei Ding, Lijie Zhang, Yangyuan Wang. Flexible Single-Component-Polymer Resistive Memory for Ultrafast and Highly Compatible Nonvolatile Memory Applications. IEEE electron device letters : a publication of the IEEE Electron Devices Society, vol.31, no.7, 758-760.

  34. Lin, Min, Chen, Qingyu, Wang, Zongwei, Fang, Yichen, Liu, Jianfeng, Yang, Yuchao, Wang, Wei, Cai, Yimao, Huang, Ru. Flexible Polymer Device Based on Parylene-C with Memory and Temperature Sensing Functionalities. Polymers, vol.9, no.8, 310-.

  35. Li, Mi, Zhuge, Fei, Zhu, Xiaojian, Yin, Kuibo, Wang, Jinzhi, Liu, Yiwei, He, Congli, Chen, Bin, Li, Run-Wei. Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches. Nanotechnology, vol.21, no.42, 425202-.

  36. Zhang, Ye, Deng, Ning, Wu, Huaqiang, Yu, Zhiping, Zhang, Jinyu, Qian, He. Metallic to hopping conduction transition in Ta2O5−x/TaOy resistive switching device. Applied physics letters, vol.105, no.6, 063508-.

  37. Leisegang, Tilmann, Meutzner, Falk, Zschornak, Matthias, Münchgesang, Wolfram, Schmid, Robert, Nestler, Tina, Eremin, Roman A., Kabanov, Artem A., Blatov, Vladislav A., Meyer, Dirk C.. The Aluminum-Ion Battery: A Sustainable and Seminal Concept?. Frontiers in chemistry, vol.7, 268-.

  38. Rocchetti, L., Amato, A., Beolchini, F.. Recovery of indium from liquid crystal displays. Journal of cleaner production, vol.116, 299-305.

  39. Yang, Yuchao, Gao, Peng, Li, Linze, Pan, Xiaoqing, Tappertzhofen, Stefan, Choi, ShinHyun, Waser, Rainer, Valov, Ilia, Lu, Wei D.. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nature communications, vol.5, 4232-.

  40. Ansara, Ibrahim, Dupin, Nathalie, Lukas, Hans Leo, Sundman, Bo. Thermodynamic assessment of the Al-Ni system. Journal of alloys and compounds, vol.247, no.1, 20-30.

  41. Min, Shin-Yi, Cho, Won-Ju. Memristive Switching Characteristics in Biomaterial Chitosan-Based Solid Polymer Electrolyte for Artificial Synapse. International journal of molecular sciences, vol.22, no.2, 773-.

  42. Pan, Saihu, Zhu, Zhiqiang, Yu, Hang, Lan, Weixia, Wei, Bin, Guo, Kunping. Switching the resistive memory behavior from binary to ternary logicviasubtle polymer donor and molecular acceptor design. Journal of materials chemistry. C, Materials for optical and electronic devices, vol.9, no.17, 5643-5651.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로