최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Bioinformatics, v.37 no.19, 2021년, pp.3270 - 3276
Ma, Ziyang (Department of Statistics, University of Georgia , Athens, GA 30602, USA) , Ahn, Jeongyoun (Department of Statistics, University of Georgia , Athens, GA 30602, USA)
AbstractMotivationOrdinal classification problems arise in a variety of real-world applications, in which samples need to be classified into categories with a natural ordering. An example of classifying high-dimensional ordinal data is to use gene expressions to predict the ordinal drug response, wh...
Int. J. Epidemiol Ananth 26 1323 1997 10.1093/ije/26.6.1323 Regression models for ordinal responses: a review of methods and applications
Cancer Inform Archer 13 187 2014 10.4137/CIN.S20806 ordinalgmifs: an R package for ordinal regression in high-dimensional data settings
Proc. Natl. Acad. Sci. USA Bergsagel 93 13931 1996 10.1073/pnas.93.24.13931 Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma
Br. J. Haematol BladÉ 102 1115 1998 10.1046/j.1365-2141.1998.00930.x Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation
Non Coding RNA Butova 5 13 2019 10.3390/ncrna5010013 Long non-coding RNAs in multiple myeloma
ICML ’97: Proceedings of the Fourteenth International Conference on Machine Learning Cardie 57 1997
Pattern Recognit. Lett de La Torre 105 144 2018 10.1016/j.patrec.2017.05.018 Weighted kappa loss function for multi-class classification of ordinal data in deep learning
Clin. Chem Duffy 54 1770 2008 10.1373/clinchem.2008.110056 A personalized approach to cancer treatment: how biomarkers can help
BMC Cancer Falgreen 15 1 2015 10.1186/s12885-015-1237-6 Predicting response to multidrug regimens in cancer patients using cell line experiments and regularised regression models
Ann. Eugen Fisher 7 179 1936 10.1111/j.1469-1809.1936.tb02137.x The use of multiple measurements in taxonomic problems
European Conference on Machine Learning Frank 145 2001
J. Am. Stat. Assoc Friedman 84 165 1989 10.1080/01621459.1989.10478752 Regularized discriminant analysis
Clin. Cancer Res Garcia-Bates 14 6414 2008 10.1158/1078-0432.CCR-08-0457 Peroxisome proliferator-activated receptor γ overexpression suppresses growth and induces apoptosis in human multiple myeloma cells
Genome Biol Geeleher 15 R47 2014 10.1186/gb-2014-15-3-r47 Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines
Ann. Stat Hastie 23 73 1995 10.1214/aos/1176324456 Penalized discriminant analysis
J. Comput. Graph. Stat Jung 28 710 2019 10.1080/10618600.2019.1568014 Penalized orthogonal iteration for sparse estimation of generalized eigenvalue problem
Hellenic Conference on Artificial Intelligence Kotsiantis 220 2004
German Conference on Bioinformatics 2013 Leha 2013
Clin. Cancer Res Ma 12 4583 2006 10.1158/1078-0432.CCR-06-0290 Predicting cancer drug response by proteomic profiling
J. R. Stat. Soc. Series B Stat. Methodol McCullagh 42 109 1980 10.1111/j.2517-6161.1980.tb01109.x Regression models for ordinal data
Blood Mulligan 109 3177 2007 10.1182/blood-2006-09-044974 Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib
J. Appl. Stat Piccarreta 28 107 2001 10.1080/02664760120011635 A new measure of nominal-ordinal association
Advances in Neural Information Processing Systems Shashua 961 2003
Oncotarget Sulima 8 89427 2017 10.18632/oncotarget.20802 Ribosomal proteins: a novel class of oncogenic drivers
Oncotarget Terragna 7 9666 2016 10.18632/oncotarget.5718 The genetic and genomic background of multiple myeloma patients achieving complete response after induction therapy with bortezomib, thalidomide and dexamethasone (VTD)
Pharmacol. Ther Vougas 203 107395 2019 10.1016/j.pharmthera.2019.107395 Machine learning and data mining frameworks for predicting drug response in cancer: an overview and a novel in silico screening process based on association rule mining
J. R. Stat. Soc. Series B Stat. Methodol Witten 73 753 2011 10.1111/j.1467-9868.2011.00783.x Penalized classification using fisher’s linear discriminant
Stem. Cell Res. Ther Yu 4 144 2013 10.1186/scrt355 A new hope for patients suffering from multiple myeloma
J. R. Stat. Soc. Series B Stat. Methodol Yuan 68 49 2006 10.1111/j.1467-9868.2005.00532.x Model selection and estimation in regression with grouped variables
BMC Cancer Zhang 18 551 2018 10.1186/s12885-018-4483-6 Predicting multi-level drug response with gene expression profile in multiple myeloma using hierarchical ordinal regression
Int. J. Oncol Zismanov 46 860 2015 10.3892/ijo.2014.2774 Multiple myeloma proteostasis can be targeted via translation initiation factor eif4e
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.