$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Bi-Directional Convolutional Recurrent Reconstructive Network for Welding Defect Detection 원문보기

IEEE access : practical research, open solutions, v.9, 2021년, pp.135316 - 135325  

Kim, Young-Min (Korea Advanced Institute of Science and Technology (KAIST), Robotics Program, Daejeon, Republic of Korea) ,  Yoon, In-Ug (Korea Advanced Institute of Science and Technology (KAIST), School of Electrical Engineering, Daejeon, Republic of Korea) ,  Myung, Hyun (Korea Advanced Institute of Science and Technology (KAIST), School of Electrical Engineering, Daejeon, Republic of Korea) ,  Kim, Jong-Hwan (Korea Advanced Institute of Science and Technology (KAIST), School of Electrical Engineering, Daejeon, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Nowadays, the welding process is essential in various manufacturing industrial fields, such as aerospace, vehicle production, and shipbuilding. The welding defects caused in the process need to be monitored as they can cause serious accidents and losses. Traditional computer vision methods in an ind...

참고문헌 (34)

  1. 10.1109/ICCVW.2017.369 

  2. arXiv 1706 05587 Rethinking atrous convolution for semantic image segmentation chen 2017 

  3. Proc Int Conf Med Image Comput Comput -Assist Intervent U-Net: Convolutional networks for biomedical image segmentation ronneberger 2015 234 

  4. 10.1109/ISPA.2019.8868619 

  5. Tripicchio, Paolo, Camacho-Gonzalez, Gerardo, D’Avella, Salvatore. Welding defect detection: coping with artifacts in the production line. International journal of advanced manufacturing technology, vol.111, no.5, 1659-1669.

  6. Zhang, Chuxu, Song, Dongjin, Chen, Yuncong, Feng, Xinyang, Lumezanu, Cristian, Cheng, Wei, Ni, Jingchao, Zong, Bo, Chen, Haifeng, Chawla, Nitesh V.. A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series Data. Proceedings of the ... aaai conference on artificial intelligence, vol.33, 1409-1416.

  7. arXiv 1508 01991 Bidirectional LSTM-CRF models for sequence tagging huang 2015 

  8. Malamas, Elias N, Petrakis, Euripides G.M, Zervakis, Michalis, Petit, Laurent, Legat, Jean-Didier. A survey on industrial vision systems, applications and tools. Image and vision computing, vol.21, no.2, 171-188.

  9. Mital, Anil, Govindaraju, M, Subramani, B. A comparison between manual and hybrid methods in parts inspection. Integrated manufacturing systems : IMS, vol.9, no.6, 344-349.

  10. 10.1109/IECON.2006.347535 

  11. Conci, A., ProenU00E7;a, C.B.. A Computer Vision Approach for Textile Inspection. Textile research journal : publication of Textile Research Institute, Inc. and the Textile Foundation, vol.70, no.4, 347-350.

  12. Proc Adv Neural Inf Process Syst ImageNet classification with deep convolutional neural networks krizhevsky 2012 1097 

  13. 10.1109/ICCV.2017.74 

  14. Jing Tian, Morillo, Carlos, Azarian, Michael H., Pecht, Michael. Motor Bearing Fault Detection Using Spectral Kurtosis-Based Feature Extraction Coupled With K-Nearest Neighbor Distance Analysis. IEEE transactions on industrial electronics : a publication of the IEEE Industrial Electronics Society, vol.63, no.3, 1793-1803.

  15. Xue-wu, Z., Yan-qiong, D., Yan-yun, L., Ai-ye, S., Rui-yu, L.. A vision inspection system for the surface defects of strongly reflected metal based on multi-class SVM. Expert systems with applications, vol.38, no.5, 5930-5939.

  16. Sassi, Paolo, Tripicchio, Paolo, Avizzano, Carlo Alberto. A Smart Monitoring System for Automatic Welding Defect Detection. IEEE transactions on industrial electronics : a publication of the IEEE Industrial Electronics Society, vol.66, no.12, 9641-9650.

  17. Augustauskas, Rytis, Lipnickas, Arūnas. Improved Pixel-Level Pavement-Defect Segmentation Using a Deep Autoencoder. Sensors, vol.20, no.9, 2557-.

  18. Feng, Yunhe, Chen, Zongyao, Wang, Dali, Chen, Jian, Feng, Zhili. DeepWelding: A Deep Learning Enhanced Approach to GTAW Using Multisource Sensing Images. IEEE transactions on industrial informatics, vol.16, no.1, 465-474.

  19. Proc IEEE Region 10 Conf (TENCON) Semiconductor wafer surface: Automatic defect classification with deep CNN phua 2020 714 

  20. Proc Adv Neural Inf Process Syst Convolutional LSTM network: A machine learning approach for precipitation nowcasting xingjian 2015 802 

  21. arXiv 1412 6980 Adam: A method for stochastic optimization kingma 2014 

  22. IEEE Trans Instrum Meas Fabric defect segmentation method based on deep learning huang 2021 10.1109/TIM.2021.3115210 70 1 

  23. Yoo, Yong-Ho, Kim, Ue-Hwan, Kim, Jong-Hwan. Convolutional Recurrent Reconstructive Network for Spatiotemporal Anomaly Detection in Solder Paste Inspection. IEEE transactions on cybernetics, vol.52, no.6, 4688-4700.

  24. Proc Adv Neural Inf Process Syst PredRNN: Recurrent neural networks for predictive learning using spatiotemporal LSTMs wang 2017 879 

  25. Lin, Hsien-I., Wibowo, Fauzy Satrio. Image Data Assessment Approach for Deep Learning-Based Metal Surface Defect-Detection Systems. IEEE access : practical research, open solutions, vol.9, 47621-47638.

  26. 10.1109/WCSP.2017.8171119 

  27. He, Zhiquan, Liu, Qifan. Deep Regression Neural Network for Industrial Surface Defect Detection. IEEE access : practical research, open solutions, vol.8, 35583-35591.

  28. Mirapeix, J., Garcia-Allende, P.B., Cobo, A., Conde, O.M., Lopez-Higuera, J.M.. Real-time arc-welding defect detection and classification with principal component analysis and artificial neural networks. NDT & E international : independent nondestructive testing and evaluation, vol.40, no.4, 315-323.

  29. Cha, Young‐Jin, Choi, Wooram, Büyüköztürk, Oral. Deep Learning‐Based Crack Damage Detection Using Convolutional Neural Networks. Computer-aided civil and infrastructure engineering, vol.32, no.5, 361-378.

  30. 10.1109/IJCNN.2016.7727522 

  31. Kang, Gaoqiang, Gao, Shibin, Yu, Long, Zhang, Dongkai. Deep Architecture for High-Speed Railway Insulator Surface Defect Detection: Denoising Autoencoder With Multitask Learning. IEEE transactions on instrumentation and measurement, vol.68, no.8, 2679-2690.

  32. Hu, Chuanfei, Wang, Yongxiong. An Efficient Convolutional Neural Network Model Based on Object-Level Attention Mechanism for Casting Defect Detection on Radiography Images. IEEE transactions on industrial electronics : a publication of the IEEE Industrial Electronics Society, vol.67, no.12, 10922-10930.

  33. Lee, Jeongick, Um, Kiwoan. A comparison in a back-bead prediction of gas metal arc welding using multiple regression analysis and artificial neural network. Optics and lasers in engineering, vol.34, no.3, 149-158.

  34. Ren, Shaoqing, He, Kaiming, Girshick, Ross, Sun, Jian. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE transactions on pattern analysis and machine intelligence, vol.39, no.6, 1137-1149.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로