$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Stacked carbon paper electrodes with pseudo-channel effect to improve flow characteristics of electrolyte in vanadium redox flow batteries 원문보기

Applied materials today, v.24, 2021년, pp.101139 -   

Jeong, Jae-Moon ,  Jeong, Kwang Il ,  Oh, Jae Hyung ,  Chung, Yong Sik ,  Kim, Seong Su

초록이 없습니다.

참고문헌 (48)

  1. J. Power Sources Wei 478 2020 10.1016/j.jpowsour.2020.228725 Enhanced cycle life of vanadium redox flow battery via a capacity and energy efficiency recovery method 

  2. J. Power Sources Jiang 482 2021 10.1016/j.jpowsour.2020.228903 Enhanced performance and durability of composite bipolar plate with surface modification of cactus-like carbon nanofibers 

  3. J. Power Sources Trovò 465 2020 10.1016/j.jpowsour.2020.228229 Battery management system for industrial-scale vanadium redox flow batteries: features and operation 

  4. Chem. Eng. J. Jiang 415 2021 10.1016/j.cej.2021.129014 Promoting vanadium redox flow battery performance by ultra-uniform ZrO2@ C from metal-organic framework 

  5. J. Energy Chem. Jiang 59 706 2021 10.1016/j.jechem.2020.12.013 Nanostructured N-doped carbon materials derived from expandable biomass with superior electrocatalytic performance towards V2+/V3+ redox reaction for vanadium redox flow battery 

  6. J. Membr. Sci. Lee 591 2019 10.1016/j.memsci.2019.117333 Layered composite membranes based on porous PVDF coated with a thin, dense PBI layer for vanadium redox flow batteries 

  7. Nano Lett. Li 13 1330 2013 10.1021/nl400223v Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery 

  8. ACS Catal. Ejigu 5 7122 2015 10.1021/acscatal.5b01973 Synergistic catalyst-support interactions in a graphene-Mn3O4 electrocatalyst for vanadium redox flow batteries 

  9. Carbon Gao 148 9 2019 10.1016/j.carbon.2019.03.035 Carbon sheet-decorated graphite felt electrode with high catalytic activity for vanadium redox flow batteries 

  10. Appl. Surf. Sci. Jung 450 301 2018 10.1016/j.apsusc.2018.04.198 Porous-nafion/PBI composite membranes and nafion/PBI blend membranes for vanadium redox flow batteries 

  11. Nano Lett. Li 14 158 2014 10.1021/nl403674a Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery 

  12. Appl. Surf. Sci. Lee 429 187 2018 10.1016/j.apsusc.2017.07.022 Mesoporous tungsten oxynitride as electrocatalyst for promoting redox reactions of vanadium redox couple and performance of vanadium redox flow battery 

  13. Electrochim. Acta Sun 37 1253 1992 10.1016/0013-4686(92)85064-R Modification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment 

  14. Electrochim. Acta Sun 37 2459 1992 10.1016/0013-4686(92)87084-D Chemical modification of graphite electrode materials for vanadium redox flow battery application-part II. Acid treatments 

  15. J. Power Sources Pezeshki 294 333 2015 10.1016/j.jpowsour.2015.05.118 High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation 

  16. Appl. Energy Flox 109 344 2013 10.1016/j.apenergy.2013.02.001 Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries 

  17. Spectrochim. Acta Part B Bulska 57 2017 2002 10.1016/S0584-8547(02)00203-3 Secondary ion mass spectrometry for characterizing antimony, arsenic and selenium on graphite surfaces modified with noble metals and used for hydride generation atomic absorption spectrometry 

  18. Electrochim. Acta Wang 52 6755 2007 10.1016/j.electacta.2007.04.121 Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery 

  19. Electrochem. Commun. González 13 1379 2011 10.1016/j.elecom.2011.08.017 Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery 

  20. Energy Storage Mater. Wang 31 230 2020 10.1016/j.ensm.2020.06.012 Carbon electrodes improving electrochemical activity and enhancing mass and charge transports in aqueous flow battery: Status and perspective 

  21. Sci. Bull. Sun 66 904 2021 10.1016/j.scib.2020.12.019 Holey aligned electrodes through in-situ ZIF-8-assisted-etching for high-performance aqueous redox flow batteries 

  22. J. Electrochem. Soc. Kazacos 136 2759 1989 10.1149/1.2097588 Performance characteristics of carbon plastic electrodes in the all-vanadium redox cell 

  23. Electrochim. Acta Sun 36 513 1991 10.1016/0013-4686(91)85135-T Chemical modification and electrochemical behavior of graphite fibre in acidic vanadium solution 

  24. J. Mater. Chem. A Kim 3 16913 2015 10.1039/C5TA02613J A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries 

  25. J. Electrochem. Soc. Dennison 163 A5163 2016 10.1149/2.0231601jes Enhancing mass transport in redox flow batteries by tailoring flow field and electrode design 

  26. J. Electrochem. Soc. Dennison 163 A5163 2015 10.1149/2.0231601jes Enhancing mass transport in redox flow batteries by tailoring flow field and electrode design 

  27. J. Power Sources Aaron 206 450 2012 10.1016/j.jpowsour.2011.12.026 Dramatic performance gains in vanadium redox flow batteries through modified cell architecture 

  28. J. Power Sources Mayrhuber 260 251 2014 10.1016/j.jpowsour.2014.03.007 Laser-perforated carbon paper electrodes for improved mass-transport in high power density vanadium redox flow batteries 

  29. J. Power Sources Jiang 440 2019 10.1016/j.jpowsour.2019.227159 A gradient porous electrode with balanced transport properties and active surface areas for vanadium redox flow batteries 

  30. J. Power Sources Houser 302 369 2016 10.1016/j.jpowsour.2015.09.095 Influence of architecture and material properties on vanadium redox flow battery performance 

  31. J. Power Sources Houser 351 96 2017 10.1016/j.jpowsour.2017.03.083 Architecture for improved mass transport and system performance in redox flow batteries 

  32. J. Electrochem. Soc. Al-Yasiri 164 A1970 2017 10.1149/2.0861709jes Study on channel geometry of all-vanadium redox flow batteries 

  33. Energy Storage Mater. Maggiolo 16 91 2019 10.1016/j.ensm.2018.04.021 Particle based method and X-ray computed tomography for pore-scale flow characterization in VRFB electrodes 

  34. Electrochim. Acta Xu 142 61 2014 10.1016/j.electacta.2014.07.059 Performance of a vanadium redox flow battery with and without flow fields 

  35. Int. J. Hydrog. Energy Lee 44 29483 2019 10.1016/j.ijhydene.2019.05.013 Numerical simulation of the power-based efficiency in vanadium redox flow battery with different serpentine channel size 

  36. Electrochim. Acta Ma 58 238 2011 10.1016/j.electacta.2011.09.042 A three-dimensional model for negative half cell of the vanadium redox flow battery 

  37. ChemistrySelect Liao 4 2421 2019 10.1002/slct.201900521 Low-carbon-content composite bipolar plates: a novel design and its performance in vanadium redox flow batteries 

  38. Appl. Energy Zhang 155 349 2015 10.1016/j.apenergy.2015.06.002 Effects of operating temperature on the performance of vanadium redox flow batteries 

  39. J. Energy Storage Xu 16 108 2018 10.1016/j.est.2018.01.005 Evaluation of redox flow batteries goes beyond round-trip efficiency: a technical review 

  40. J. Power Sources Wei 437 2019 10.1016/j.jpowsour.2019.226918 Investigation of an aqueous rechargeable battery consisting of manganese tin redox chemistries for energy storage 

  41. Int. J. Energy Res. He 44 2100 2020 10.1002/er.5068 Carbon paper decorated with tin dioxide particle via in situ electrodeposition as bifunctional electrode for vanadium redox flow battery 

  42. Appl. Surf. Sci. Zhang 2020 Sb-doped SnO2 nanoparticle-modified carbon paper as a superior electrode for a vanadium redox flow battery 

  43. Mater. Adv. Sodiq 1 2033 2020 10.1039/D0MA00142B Enhanced electrochemical performance of modified thin carbon electrodes for all-vanadium redox flow batteries 

  44. Chem. Eng. J. Abbas 378 2019 10.1016/j.cej.2019.122190 Highly functionalized nanoporous thin carbon paper electrodes for high energy density of zero-gap vanadium redox flow battery 

  45. Electrochim. Acta Jiang 322 2019 10.1016/j.electacta.2019.134754 Electrocatalytic activity of MnO2 nanosheet array-decorated carbon paper as superior negative electrode for vanadium redox flow batteries 

  46. Carbon He 127 297 2018 10.1016/j.carbon.2017.11.006 Carbon layer-exfoliated, wettability-enhanced, SO3H-functionalized carbon paper: a superior positive electrode for vanadium redox flow battery 

  47. J. Power Sources Zhou 325 329 2016 10.1016/j.jpowsour.2016.06.048 A high-performance dual-scale porous electrode for vanadium redox flow batteries 

  48. Energy Technol. Wei 4 990 2016 10.1002/ente.201600016 Titanium carbide nanoparticle-decorated electrode enables significant enhancement in performance of all-vanadium redox flow batteries 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로