$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Customizable, conformal, and stretchable 3D electronics via predistorted pattern generation and thermoforming 원문보기

Science advances, v.7 no.42, 2021년, pp.eabj0694 -   

Choi, Jungrak (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea.) ,  Han, Chankyu (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea.) ,  Cho, Seokjoo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea.) ,  Kim, Kyuyoung (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea.) ,  Ahn, Junseong (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea.) ,  Del Orbe, Dionisio (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea.) ,  Cho, Incheol (Department of Mechanical Engineering, Korea Advanced Institute of Scie) ,  Zhao, Zhi-Jun ,  Oh, Yong Suk ,  Hong, Hyunsoo ,  Kim, Seong Su ,  Park, Inkyu

Abstract AI-Helper 아이콘AI-Helper

Thermoforming is a versatile technique to fabricate stretchable and customizable 3DEs for a variety of wearable applications.Recently, three-dimensional electronics (3DE) is attracting huge interest owing to the increasing demands for seamless integration of electronic systems on 3D curvilinear surf...

참고문헌 (27)

  1. 1 Y. Huang , H. Wu , L. Xiao , Y. Duan , H. Zhu , J. Bian , D. Ye , Z. Yin , Assembly and applications of 3D conformal electronics on curvilinear surfaces . Mater. Horiz. 6 , 642 – 683 ( 2019 ). 

  2. 2 J. W. Jeong , W. H. Yeo , A. Akhtar , Y. J. Kwack , S. Li , S. Y. Jung , Y. Su , W. Lee , J. Xia , H. Cheng , Y. Huang , W. S. Choi , T. Bretl , J. A. Rogers , Materials and optimized designs for human-machine interfaces via epidermal electronics . Adv. Mater. 25 , 6839 – 6846 ( 2013 ). 24327417 

  3. 3 D. H. Kim , J. H. Ahn , W. M. Choi , H. S. Kim , T. H. Kim , J. Song , Y. Y. Huang , Z. Liu , C. Lu , J. A. Rogers , Stretchable and foldable silicon integrated circuits . Science 320 , 507 – 511 ( 2008 ). 18369106 

  4. 4 C. Pang , J. H. Koo , A. Nguyen , J. M. Caves , M. G. Kim , A. Chortos , K. Kim , P. J. Wang , J. B. Tok , Z. Bao , Highly skin-conformal microhairy sensor for pulse signal amplification . Adv. Mater. 27 , 634 – 640 ( 2015 ). 25358966 

  5. 5 K. Sim , S. Chen , Z. Li , Z. Rao , J. Liu , Y. Lu , S. Jang , F. Ershad , J. Chen , J. Xiao , C. Yu , Three-dimensional curvy electronics created using conformal additive stamp printing . Nat. Electron. 2 , 471 – 479 ( 2019 ). 

  6. 6 G. Loke , R. Yuan , M. Rein , T. Khudiyev , Y. Jain , J. Joannopoulos , Y. Fink , Structured multimaterial filaments for 3D printing of optoelectronics . Nat. Commun. 10 , 4010 ( 2019 ). 31488825 

  7. 7 J. Adams , E. B. Duoss , T. F. Malkowski , M. J. Motala , B. Y. Ahn , R. G. Nuzzo , J. T. Bernhard , J. A. Lewis , Conformal printing of electrically small antennas on three-dimensional surfaces . Adv. Mater. 23 , 1335 – 1340 ( 2011 ). 21400592 

  8. 8 Y. Jo , J. Y. Kim , S. Jung , B. Y. Ahn , J. A. Lewis , Y. Choi , S. Jeong , 3D polymer objects with electronic components interconnected via conformally printed electrodes . Nanoscale 9 , 14798 – 14803 ( 2017 ). 28956046 

  9. 9 A. D. Valentine , T. A. Busbee , J. W. Boley , J. R. Raney , A. Chortos , A. Kotikian , J. D. Berrigan , M. F. Durstock , J. A. Lewis , Hybrid 3D printing of soft electronics . Adv. Mater. 29 , 1703817 ( 2017 ). 

  10. 10 S. Yoon , K. Choi , S. Baek , H. Chang , Electronic circuit patterning on curved surface by direct laser structuring . Int. Conf. Electr. Mach. Syst. 2011 , 1 – 3 ( 2011 ). 

  11. 11 R. C. Auyeung , M. W. Nurnberger , D. J. Wendland , A. Pique , C. B. Arnold , A. R. Abbott , L. C. Schuette , Laser fabrication of GPS conformal antennas . Photon Process. Microelectron. Photon. III 5339 , 292 – 297 ( 2004 ). 

  12. 12 F. Cai , S. Pavlidis , J. Papapolymerou , Y. H. Chang , K. Wang , C. Zhang , B. Wang , Aerosol jet printing for 3-D multilayer passive microwave circuitry . Eur. Microwave Conf. 2014 , 512 – 515 ( 2014 ). 

  13. 13 G. Saada , M. Layani , A. Chernevousky , S. Magdassi , Hydroprinting conductive patterns onto 3D structures . Adv. Mater. Technol. 2 , 1600289 ( 2017 ). 

  14. 14 M. Tavakoli , M. H. Malakooti , H. Paisana , Y. Ohm , D. G. Marques , P. A. Lopes , A. P. Piedade , A. T. Almeida , C. Majidi , EGaIn-assisted room-temperature sintering of silver nanoparticles for stretchable, inkjet-printed, thin-film electronics . Adv. Mater. 30 , 1801852 ( 2018 ). 

  15. 15 P. A. Lopes , H. Paisana , A. T. Almeida , C. Majidi , M. Tavakoli , Hydroprinted electronics: Ultrathin stretchable Ag–In–Ga E-skin for bioelectronics and human–machine interaction . ACS Appl. Mater. Interfaces 10 , 38760 – 38768 ( 2018 ). 30338978 

  16. 16 K. Wu , Q. Zhou , H. Zou , K. Leng , Y. Zeng , Z. Wu , High precision thermoforming 3d-conformable electronics with a phase-changing adhesion interlayer . Micromachines 10 , 160 ( 2019 ). 30813578 

  17. 17 Y. Yang , T. Vervust , S. Dunphy , S. V. Put , B. Vandecasteele , K. Dhaenens , L. Degrendele , L. Mader , L. D. Vriese , T. Martens , M. Kaufmann , T. Sekitani , J. Vanfleteren , 3D multifunctional composites based on large-area stretchable circuit with thermoforming technology . Adv. Electron. Mater. 4 , 1800071 ( 2018 ). 

  18. 18 S. Y. Lee , S. H. Jang , H. K. Lee , J. S. Kim , S. K. Lee , H. J. Song , J. W. Jung , E. S. Yoo , J. Choi , The development and investigation of highly stretchable conductive inks for 3-dimensional printed in-mold electronics . Org. Electron. 85 , 105881 ( 2020 ). 

  19. 19 J. Ting, Y. Zhang, S. H. Yoon, J. D. Holbery, S. Ma, iMold: Enabling interactive design optimization for in-mold electronics, in Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems (2020), pp. 1–7. 

  20. 20 C. Schüller , D. Panozzo , A. Grundhöfer , H. Zimmer , E. Sorkine , O. S. Hornung , Computational thermoforming . ACM Trans. Graphics 35 , 1 – 9 ( 2016 ). 

  21. 21 Y. Zhang , Y. Tong , K. Zhou , Coloring 3D printed surfaces by thermoforming . IEEE Trans. Vis. Comput. Graph. 23 , 1924 – 1935 ( 2016 ). 

  22. 22 J. Tang , X. Zhao , J. Li , R. Guo , Y. Zhou , J. Liu , Gallium-based liquid metal amalgams: transitional-state metallic mixtures (TransM2ixes) with enhanced and tunable electrical, thermal, and mechanical properties . ACS Appl. Mater. Interfaces 9 , 35977 – 35987 ( 2017 ). 28948776 

  23. 23 R. Guo , H. Wang , X. Sun , S. Yao , H. Chang , H. Wang , J. Liu , Y. Zhang , Semiliquid metal enabled highly conductive wearable electronics for smart fabrics . ACS Appl. Mater. Interfaces 11 , 30019 – 30027 ( 2019 ). 31342753 

  24. 24 J. Yang , W. Cheng , K. Kalantar-Zadeh , Electronic skins based on liquid metals . Proc. IEEE 107 , 2168 – 2184 ( 2019 ). 

  25. 25 M. Ying , A. P. Bonifas , N. Lu , Y. Su , R. Li , H. Cheng , A. Ameen , Y. Huang , J. A. Rogers , Silicon nanomembranes for fingertip electronics . Nanotechnology 23 , 344004 ( 2012 ). 22885907 

  26. 26 Y. Gao , H. Ota , E. W. Schaler , K. Chen , A. Zhao , W. Gao , H. M. Fahad , Y. Leng , A. Zheng , F. Xiong , C. Zhang , L. C. Tai , P. Zhao , R. S. Fearing , A. Javey , Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring . Adv. Mater. 29 , 1701985 ( 2017 ). 

  27. 27 S. W. Jin , J. Park , S. Y. Hong , H. Park , Y. R. Jeong , J. Park , S. S. Lee , J. S. Ha , Stretchable loudspeaker using liquid metal microchannel . Sci. Rep. 5 , 11695 ( 2015 ). 26181209 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로