$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Computational techniques for characterisation of electrically conductive MOFs: quantum calculations and machine learning approaches 원문보기

Journal of materials chemistry. C, Materials for optical and electronic devices, v.9 no.39, 2021년, pp.13584 - 13599  

Zanca, Federica (Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S13JD, UK) ,  Glasby, Lawson T. (Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S13JD, UK) ,  Chong, Sanggyu (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea) ,  Chen, Siyu (Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK) ,  Kim, Jihan (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea) ,  Fairen-Jimenez, David (The Adsorption & Advanced Materials Laboratory (AAML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK) ,  Monserrat, Bartomeu (Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK) ,  Moghadam, Peyman Z. (Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S13JD, UK)

Abstract AI-Helper 아이콘AI-Helper

The customisability of metal-organic frameworks (MOFs) has attracted exponentially growing interest in the realm of materials science. Because of their porous nature, MOF research has been primarily focused on gas storage and separation. More recent investigations into MOFs have realised promising e...

참고문헌 (162)

  1. Nature Yaghi 378 1995 10.1038/378703a0 703 

  2. Chem. Mater. Moghadam 29 2017 10.1021/acs.chemmater.7b00441 2618 

  3. Angew. Chem., Int. Ed. Sun 55 2016 10.1002/anie.201506219 3566 

  4. Chem. Soc. Rev. Stassen 46 2017 10.1039/C7CS00122C 3185 

  5. Energy Environ. Sci. Morozan 5 2012 10.1039/c2ee22989g 9269 

  6. Chem. Rev. Xie 120 2020 10.1021/acs.chemrev.9b00766 8536 

  7. Dalton Trans. Yan 50 2021 10.1039/D0DT03844J 2342 

  8. EnergyChem Li 2 2 2020 10.1016/j.enchem.2020.100029 100029 

  9. J. Am. Chem. Soc. Wu 139 2017 10.1021/jacs.6b08511 1360 

  10. Inorg. Chem. Ullman 55 2016 10.1021/acs.inorgchem.6b00909 7233 

  11. Inorg. Chem. Lin 51 2012 10.1021/ic301189m 9039 

  12. Handbook of Computational Chemistry Kedziera 2012 55 10.1007/978-94-007-0711-5_3, D.Kedziera and A.Kaczmarek-Kedziera , in Handbook of Computational Chemistry , ed. J. Leszczynski , Springer , Netherlands, Dordrecht , 2012 10.1007/978-94-007-0711-5_3, pp. 55-93 

  13. Phys. Rev. Kohn 140 1965 10.1103/PhysRev.140.A1133 A1133 

  14. Phys. Rev. Hohenberg 136 1964 10.1103/PhysRev.136.B864 B864 

  15. Phys. Rev. B: Condens. Matter Mater. Phys. Hybertsen 34 1986 10.1103/PhysRevB.34.5390 5390 

  16. Essentials of computational chemistry: theories and models Cramer 2013 C. J.Cramer , Essentials of computational chemistry: theories and models , John Wiley & Sons , 2013 

  17. J. Chem. Phys. Becke 140 2014 10.1063/1.4869598 18A301 

  18. Frank J.Frank , Editorial Offices October, 1999 

  19. Z. Phys. Fock 61 1930 10.1007/BF01340294 126 

  20. Math. Proc. Cambridge Philos. Soc. Hartree 24 1928 10.1017/S0305004100011920 111 

  21. Phys. Rev. Møller 46 1934 10.1103/PhysRev.46.618 618 

  22. Int. J. Quantum Chem. Monkhorst 12 2009 10.1002/qua.560120850 421 

  23. NIC Series Friedrich 31 2006 335 

  24. Comput. Mater. Sci. Kresse 6 1996 10.1016/0927-0256(96)00008-0 15 

  25. Z. Kristallogr. - Cryst. Mater. Clark 220 2005 10.1524/zkri.220.5.567.65075 567 

  26. J. Phys.: Condens. Matter Giannozzi 21 2009 395502 

  27. J. Chem. Phys. Kuhne 152 2020 10.1063/5.0007045 194103 

  28. Advances in Quantum Chemistry Klahn 1981 155 B.Klahn , in Advances in Quantum Chemistry , ed. P.-O. Löwdin , Academic Press , 1981 , vol. 13, pp. 155-209 

  29. J. Phys.: Condens. Matter Soler 14 2002 2745 

  30. J. Chem. Phys. Dovesi 152 2020 10.1063/5.0004892 204111 

  31. Wiley Interdiscip. Rev.: Comput. Mol. Sci. Dovesi 8 2018 e1360 

  32. J. Chem. Phys. Delley 113 2000 10.1063/1.1316015 7756 

  33. J. Comput. Chem. Te Velde 22 2001 10.1002/jcc.1056 931 

  34. J. Chem. Phys. Hourahine 152 2020 10.1063/1.5143190 124101 

  35. Computer program Frisch 2016 

  36. Can. J. Phys. Vosko 58 1980 10.1139/p80-159 1200 

  37. Phys. Rev. Lett. Perdew 77 1996 10.1103/PhysRevLett.77.3865 3865 

  38. Phys. Rev. Lett. Perdew 100 2008 10.1103/PhysRevLett.100.136406 136406 

  39. J. Phys. Chem. Lett. Bao 9 2018 10.1021/acs.jpclett.8b00242 2353 

  40. J. Phys. Chem. C Ling 119 2015 10.1021/acs.jpcc.5b04050 16667 

  41. Wiley Interdiscip. Rev.: Comput. Mol. Sci. Grimme 1 2011 211 

  42. J. Chem. Phys. Klimeš 137 2012 10.1063/1.4754130 120901 

  43. J. Phys.: Condens. Matter Anisimov 9 1997 767 

  44. Phys. Rev. B: Condens. Matter Mater. Phys. Kresse 59 1999 10.1103/PhysRevB.59.1758 1758 

  45. J. Am. Chem. Soc. Sheberla 136 2014 10.1021/ja502765n 8859 

  46. J. Chem. Phys. Krukau 125 2006 10.1063/1.2404663 224106 

  47. J. Chem. Phys. Becke 98 1993 10.1063/1.464304 1372 

  48. Phys. Rev. B: Condens. Matter Mater. Phys. Lee 37 1988 10.1103/PhysRevB.37.785 785 

  49. Theor. Chem. Acc. Zhao 120 2008 10.1007/s00214-007-0310-x 215 

  50. J. Chem. Phys. Ditchfield 54 1971 10.1063/1.1674902 724 

  51. Nat. Mater. Dou 20 2021 10.1038/s41563-020-00847-7 222 

  52. Int. J. Quantum Chem. Perdew 28 1985 10.1002/qua.560280846 497 

  53. Inorg. Chem. Hendrickx 54 2015 10.1021/acs.inorgchem.5b01593 10701 

  54. Inorg. Chem. Zhang 52 2013 10.1021/ic400927m 9356 

  55. J. Am. Chem. Soc. Zhou 133 2011 10.1021/ja204990j 15113 

  56. Phys. Rev. B: Condens. Matter Mater. Phys. Levine 43 1991 10.1103/PhysRevB.43.4187 4187 

  57. J. Mater. Chem. C Yang 2 2014 10.1039/C4TC00902A 7111 

  58. J. Am. Chem. Soc. Stowasser 121 1999 10.1021/ja9826892 3414 

  59. Nat. Commun. Huang 6 2015 10.1038/ncomms8480 7480 

  60. J. Phys. Chem. C Pham 118 2014 10.1021/jp405997r 4567 

  61. Appl. Surf. Sci. Anh Tran 538 2021 10.1016/j.apsusc.2020.148065 148065 

  62. ChemSusChem Gascon 1 2008 10.1002/cssc.200800203 981 

  63. J. Am. Chem. Soc. Sun 2016 14772 L.Sun , S. S.Park , D.Sheberla and M.Dincă , J. Am. Chem. Soc. , 2016 , 138 , 14772-14782 

  64. J. Am. Chem. Soc. Kaye 129 2007 10.1021/ja076877g 14176 

  65. ChemSusChem Gascon 1 2008 10.1002/cssc.200800203 981 

  66. J. Mater. Chem. A Taddei 7 2019 10.1039/C9TA05216J 23781 

  67. Int. J. Quantum Chem. Himmetoglu 114 2014 10.1002/qua.24521 14 

  68. J. Phys. Chem. C Morales-García 121 2017 10.1021/acs.jpcc.7b07421 18862 

  69. ACS Catal. Miner 7 2017 10.1021/acscatal.7b02647 7726 

  70. Nat. Commun. Huang 6 2015 10.1038/ncomms8408 7408 

  71. Phys. Rev. Lett. Perdew 49 1982 10.1103/PhysRevLett.49.1691 1691 

  72. CHIMIA Reiher 63 2009 10.2533/chimia.2009.140 140 

  73. J. Chem. Theory Comput. Boguslawski 8 2012 10.1021/ct300211j 1970 

  74. J. Chem. Phys. Boguslawski 138 2013 10.1063/1.4788913 044111 

  75. Comprehensive Inorganic Chemistry II: From Elements to Applications Danovich 1 D.Danovich , S.Shaik and H.Chen , Comprehensive Inorganic Chemistry II: From Elements to Applications , 2013, vol. 9, pp. 1-57 

  76. J. Am. Chem. Soc. Hendon 135 2013 10.1021/ja405350u 10942 

  77. J. Am. Chem. Soc. Butler 136 7 2014 10.1021/ja4110073 2703 

  78. J. Phys. Chem. C Flage-Larsen 117 2013 10.1021/jp405335q 20610 

  79. Chem. Mater. Valenzano 23 2011 10.1021/cm1022882 1700 

  80. Cryst. Growth Des. Yang 14 2014 10.1021/cg500243s 2532 

  81. Inorg. Chem. Lin 51 2012 10.1021/ic301189m 9039 

  82. J. Phys. Chem. B Kuc 111 2007 10.1021/jp072085x 8179 

  83. RSC Adv. Yang 2 2012 10.1039/C1RA00187F 1618 

  84. Phys. Chem. Chem. Phys. Yang 14 2012 10.1039/c2cp24091b 4713 

  85. Cryst. Growth Des. Ye 21 8 2021 10.1021/acs.cgd.1c00460 4780 

  86. Appl. Phys. Lett. Gu 107 2015 10.1063/1.4934737 183301 

  87. Chem. Sci. Hendon 6 2015 10.1039/C5SC01489A 3674 

  88. RSC Adv. Degaga 9 2019 10.1039/C9RA00687G 14260 

  89. Cryst. Growth Des. Zhang 21 2021 10.1021/acs.cgd.0c01447 729 

  90. J. Phys. Chem. C Foster 120 2016 10.1021/acs.jpcc.6b05746 15001 

  91. Phys. Chem. Chem. Phys. Chen 17 2015 10.1039/C4CP05328A 5954 

  92. Nat. Chem. Skorupskii 12 2020 10.1038/s41557-019-0372-0 131 

  93. J. Am. Chem. Soc. Xie 140 2018 10.1021/jacs.8b03604 7411 

  94. J. Phys. Chem. C Wei 120 2016 10.1021/acs.jpcc.6b09175 26908 

  95. Microporous Mesoporous Mater. Märcz 157 2012 10.1016/j.micromeso.2011.12.035 62 

  96. Int. J. Hydrogen Energy Botas 36 2011 10.1016/j.ijhydene.2011.05.187 10834 

  97. J. Am. Chem. Soc. Butler 136 2014 10.1021/ja4110073 2703 

  98. Chem. Phys. Lett. de Oliveira 691 2018 10.1016/j.cplett.2017.11.027 283 

  99. ACS Appl. Mater. Interfaces Guo 9 2017 10.1021/acsami.7b07292 32413 

  100. Mater. Res. Bull. Kang 138 2021 10.1016/j.materresbull.2021.111239 111239 

  101. Adv. Mater. Usman 29 2017 10.1002/adma.201605071 1605071 

  102. Adv. Funct. Mater. Sippel 24 2014 10.1002/adfm.201400083 3885 

  103. J. Am. Chem. Soc. Aubrey 141 2019 10.1021/jacs.9b00654 5005 

  104. Matter Rosen 4 2021 10.1016/j.matt.2021.02.015 1578 

  105. J. Mater. Chem. A Leong 2 2014 10.1039/C3TA14328G 3389 

  106. Phys. Chem. Chem. Phys. Choi 11 2009 10.1039/B816668D 628 

  107. J. Am. Chem. Soc. Park 137 2015 10.1021/ja512437u 1774 

  108. Dalton Trans. Chong 49 2020 10.1039/C9DT03865E 102 

  109. J. Mater. Chem. Yang 22 2012 10.1039/c2jm35602c 21849 

  110. Angew. Chem. Wang 123 2011 10.1002/ange.201005917 470 

  111. J. Mater. Chem. C Yan 1 2013 10.1039/C2TC00591C 997 

  112. Nat. Mater. Dong 17 2018 10.1038/s41563-018-0189-z 1027 

  113. J. Am. Chem. Soc. Clough 139 2017 10.1021/jacs.7b05742 10863 

  114. J. Am. Chem. Soc. Kambe 136 2014 10.1021/ja507619d 14357 

  115. Chem. Sci. Sun 8 2017 10.1039/C7SC02688A 8078 

  116. Int. J. Hydrogen Energy Yu 45 2020 10.1016/j.ijhydene.2019.12.114 6757 

  117. Angew. Chem., Int. Ed. Liu 54 2015 10.1002/anie.201501862 7441 

  118. Microporous Mesoporous Mater. Yang 175 2013 10.1016/j.micromeso.2013.03.020 50 

  119. J. Mol. Liq. Abdpour 319 2020 10.1016/j.molliq.2020.114341 114341 

  120. Chem. Sci. Sun 8 2017 10.1039/C7SC00647K 4450 

  121. J. Am. Chem. Soc. Sun 137 2015 10.1021/jacs.5b02897 6164 

  122. J. Hazard. Mater. Du 190 2011 10.1016/j.jhazmat.2011.04.029 945 

  123. Sol. RRL Qiu 4 2020 10.1002/solr.201900449 1900449 

  124. Nanoscale Zhao 5 2013 10.1039/c3nr03323f 10404 

  125. J. Am. Chem. Soc. Dou 139 2017 10.1021/jacs.7b07234 13608 

  126. ACS Mater. Lett. Liang 2 2020 10.1021/acsmaterialslett.9b00399 220 

  127. J. Am. Chem. Soc. Wu 140 2018 10.1021/jacs.8b03613 7904 

  128. Science Talin 343 2014 10.1126/science.1246738 66 

  129. Coord. Chem. Rev. Chong 423 2020 10.1016/j.ccr.2020.213487 213487 

  130. J. Phys. Chem. C Raza 124 2020 10.1021/acs.jpcc.0c04903 19070 

  131. Chem. Mater. Korolev 32 2020 10.1021/acs.chemmater.0c02468 7822 

  132. J. Chem. Theory Comput. Kancharlapalli 2021 10.1021/acs.jctc.0c01229 3052 

  133. ACS Appl. Mater. Interfaces Deeg 12 2020 10.1021/acsami.0c01659 21559 

  134. Chem. Mater. Nazarian 28 2016 10.1021/acs.chemmater.5b03836 785 

  135. J. Chem. Eng. Chung 64 12 2019 5985 

  136. Comput. Mater. Sci. Dey 83 2014 10.1016/j.commatsci.2013.10.016 185 

  137. Comput. Mater. Sci. Pilania 129 2017 10.1016/j.commatsci.2016.12.004 156 

  138. Phys. Rev. B Lee 93 2016 10.1103/PhysRevB.93.115104 115104 

  139. J. Phys. Chem. Lett. Zhuo 9 2018 10.1021/acs.jpclett.8b00124 1668 

  140. J. Phys. Chem. Lett. He 9 2018 10.1021/acs.jpclett.8b01707 4562 

  141. npj Comput. Mater. Kirklin 1 2015 10.1038/npjcompumats.2015.10 1 

  142. Phys. Rev. Lett. Xie 120 2018 10.1103/PhysRevLett.120.145301 145301 

  143. Chem. Mater. Chen 31 2019 10.1021/acs.chemmater.9b01294 3564 

  144. Phys. Chem. Chem. Phys. Louis 22 2020 10.1039/D0CP01474E 18141 

  145. APL Mater. Jain 1 2013 10.1063/1.4812323 011002 

  146. Adv. Quantum Technol. Olsthoorn 2 2019 10.1002/qute.201900023 1900023 

  147. Inorg. Chim. Acta Manna 358 2005 10.1016/j.ica.2005.07.014 4497 

  148. Cryst. Growth Des. Naito 11 2011 10.1021/cg101295p 501 

  149. CrystEngComm Sekine 19 2017 10.1039/C7CE00492C 2300 

  150. Inorg. Chem. Commun. Salami 12 2009 10.1016/j.inoche.2009.09.008 1150 

  151. Angew. Chem., Int. Ed. Groom 53 2014 10.1002/anie.201306438 662 

  152. Angew. Chem., Int. Ed. Clements 53 2014 10.1002/anie.201402951 10164 

  153. Adv. Mater. Lopez 22 2010 10.1002/adma.200903217 986 

  154. J. Mater. Chem. C Zhang 2 2013 10.1039/C3TC31577K 399 

  155. New J. Chem. Li 42 2018 10.1039/C7NJ05032A 7247 

  156. Inorg. Chem. Yan 45 2006 10.1021/ic0604563 5109 

  157. Inorg. Chem. Lysenko 54 2015 10.1021/acs.inorgchem.5b01007 8327 

  158. New J. Chem. Wang 41 2017 10.1039/C6NJ03573F 2178 

  159. Angew. Chem., Int. Ed. Peng 57 2018 10.1002/anie.201806732 10971 

  160. Chem. Mater. Kobayashi 22 2010 10.1021/cm101238m 4120 

  161. J. Am. Chem. Soc. Taylor 138 2016 10.1021/jacs.6b09155 15019 

  162. Science Cui 353 2016 10.1126/science.aaf2458 141 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로