$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] The chromatin remodeler Ino80 mediates RNAPII pausing site determination 원문보기

Genome biology, v.22 no.1 = v.22, 2021년, pp.294 -   

Cheon, Youngseo (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141 South Korea) ,  Han, Sungwook (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141 South Korea) ,  Kim, Taemook (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141 South Korea) ,  Hwang, Daehee (School of Biological Sciences, Seoul National University, Seoul, 08826 South Korea) ,  Lee, Daeyoup (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141 South Korea)

Abstract AI-Helper 아이콘AI-Helper

BackgroundPromoter-proximal pausing of RNA polymerase II (RNAPII) is a critical step for the precise regulation of gene expression. Despite the apparent close relationship between promoter-proximal pausing and nucleosome, the role of chromatin remodeler governing this step has mainly remained elusiv...

Keyword

참고문헌 (99)

  1. 1. Core L Adelman K Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation Genes Dev 2019 33 15-16 960 982 10.1101/gad.325142.119 31123063 

  2. 2. Giardina C Pérez-Riba M Lis JT Promoter melting and TFIID complexes on Drosophila genes in vivo Genes Dev 1992 6 11 2190 2200 10.1101/gad.6.11.2190 1427079 

  3. 3. Gilmour DS Lis JT RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells Mol Cell Biol 1986 6 11 3984 3989 3099167 

  4. 4. Rasmussen EB Lis JT In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes Proc Natl Acad Sci U S A 1993 90 17 7923 7927 10.1073/pnas.90.17.7923 8367444 

  5. 5. Rougvie AE Lis JT The RNA polymerase II molecule at the 5’ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged Cell 1988 54 795 804 10.1016/S0092-8674(88)91087-2 3136931 

  6. 6. Rougvie AE Lis JT Postinitiation transcriptional control in Drosophila melanogaster Mol Cell Biol 1990 10 11 6041 6045 2172790 

  7. 7. Wada T Takagi T Yamaguchi Y Ferdous A Imai T Hirose S DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs Genes Dev 1998 12 3 343 356 10.1101/gad.12.3.343 9450929 

  8. 8. Yamaguchi Y Takagi T Wada T Yano K Furuya A Sugimoto S NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation Cell. 1999 97 1 41 51 10.1016/S0092-8674(00)80713-8 10199401 

  9. 9. Yamaguchi Y Shibata H Handa H Transcription elongation factors DSIF and NELF: promoter-proximal pausing and beyond Biochim Biophys Acta 2013 1829 1 98 104 10.1016/j.bbagrm.2012.11.007 23202475 

  10. 10. Lee C Li X Hechmer A Eisen M Biggin MD Venters BJ NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila Mol Cell Biol 2008 28 10 3290 3300 10.1128/MCB.02224-07 18332113 

  11. 11. Muse GW Gilchrist DA Nechaev S Shah R Parker JS Grissom SF RNA polymerase is poised for activation across the genome Nat Genet 2007 39 12 1507 1511 10.1038/ng.2007.21 17994021 

  12. 12. Zeitlinger J Stark A Kellis M Hong JW Nechaev S Adelman K RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo Nat Genet 2007 39 12 1512 1516 10.1038/ng.2007.26 17994019 

  13. 13. Kim TH Barrera LO Zheng M Qu C Singer MA Richmond TA A high-resolution map of active promoters in the human genome Nature. 2005 436 7052 876 880 10.1038/nature03877 15988478 

  14. 14. Guenther MG Levine SS Boyer LA Jaenisch R Young RA A chromatin landmark and transcription initiation at most promoters in human cells Cell. 2007 130 1 77 88 10.1016/j.cell.2007.05.042 17632057 

  15. 15. Core LJ Waterfall JJ Lis JT Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters Science. 2008 322 5909 1845 1848 10.1126/science.1162228 19056941 

  16. 16. Kwak H Fuda NJ Core LJ Lis JT Precise maps of RNA polymerase reveal how promoters direct initiation and pausing Science. 2013 339 6122 950 953 10.1126/science.1229386 23430654 

  17. 17. Mahat DB Kwak H Booth GT Jonkers IH Danko CG Patel RK Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq) Nat Protoc 2016 11 8 1455 1476 10.1038/nprot.2016.086 27442863 

  18. 18. Churchman LS Weissman JS Nascent transcript sequencing visualizes transcription at nucleotide resolution Nature. 2011 469 7330 368 373 10.1038/nature09652 21248844 

  19. 19. Nojima T Gomes T Grosso ARF Kimura H Dye MJ Dhir S Mammalian NET-Seq reveals genome-wide nascent transcription coupled to RNA processing Cell. 2015 161 3 526 540 10.1016/j.cell.2015.03.027 25910207 

  20. 20. Stargell LA Struhl K Mechanisms of transcriptional activation in vivo: two steps forward Trends Genet 1996 12 8 311 315 10.1016/0168-9525(96)10028-7 8783941 

  21. 21. Ptashne M Gann A Transcriptional activation by recruitment Nature. 1997 386 6625 569 577 10.1038/386569a0 9121580 

  22. 22. Narita T Yamaguchi Y Yano K Sugimoto S Chanarat S Wada T Human transcription elongation factor NELF: identification of novel subunits and reconstitution of the functionally active complex Mol Cell Biol 2003 23 6 1863 1873 10.1128/MCB.23.6.1863-1873.2003 12612062 

  23. 23. Chang GS Noegel AA Mavrich TN Müller R Tomsho L Ward E Unusual combinatorial involvement of poly-A/T tracts in organizing genes and chromatin in Dictyostelium Genome Res 2012 22 6 1098 1106 10.1101/gr.131649.111 22434426 

  24. 24. Venters BJ Pugh BF A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome Genome Res 2009 19 3 360 371 10.1101/gr.084970.108 19124666 

  25. 25. Core LJ Waterfall JJ Gilchrist DA Fargo DC Kwak H Adelman K Defining the status of RNA polymerase at promoters Cell Rep 2012 2 4 1025 1035 10.1016/j.celrep.2012.08.034 23062713 

  26. 26. Gilchrist DA Dos Santos G Fargo DC Xie B Gao Y Li L Adelman K Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation Cell. 2010 143 4 540 551 10.1016/j.cell.2010.10.004 21074046 

  27. 27. Maxwell CS Kruesi WS Core LJ Kurhanewicz N Waters CT Lewarch CL Pol II docking and pausing at growth and stress genes in C. elegans Cell Rep 2014 6 3 455 466 10.1016/j.celrep.2014.01.008 24485661 

  28. 28. Booth GT Wang IX Cheung VG Lis JT Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast Genome Res 2016 26 6 799 811 10.1101/gr.204578.116 27197211 

  29. 29. Teves SS Weber CM Henikoff S Transcribing through the nucleosome Trends Biochem Sci 2014 39 12 577 586 10.1016/j.tibs.2014.10.004 25455758 

  30. 30. Kujirai T Ehara H Fujino Y Shirouzu M Sekine SI Kurumizaka H Structural basis of the nucleosome transition during RNA polymerase II passage Science. 2018 362 6414 595 598 10.1126/science.aau9904 30287617 

  31. 31. Ehara H Kujirai T Fujino Y Shirouzu M Kurumizaka H Sekine SI Structural insight into nucleosome transcription by RNA polymerase II with elongation factors Science. 2019 363 6428 744 747 10.1126/science.aav8912 30733384 

  32. 32. Weber CM Ramachandran S Henikoff S Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase Mol Cell 2014 53 5 819 830 10.1016/j.molcel.2014.02.014 24606920 

  33. 33. Aoi Y Smith ER Shah AP Rendleman EJ Marshall SA Woodfin AR NELF regulates a promoter-proximal step distinct from RNA Pol II pause-release Mol Cell 2020 78 261 274.e265 10.1016/j.molcel.2020.02.014 32155413 

  34. 34. Skene PJ Hernandez AE Groudine M Henikoff S The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1 Elife. 2014 3 e02042 10.7554/eLife.02042 24737864 

  35. 35. Doris SM Chuang J Viktorovskaya O Murawska M Spatt D Churchman LS Spt6 is required for the fidelity of promoter selection Mol Cell 2018 72 687 699.e686 10.1016/j.molcel.2018.09.005 30318445 

  36. 36. Poli J Gasser SM Papamichos-Chronakis M The INO80 remodeller in transcription, replication and repair Philos Trans R Soc Lond Ser B Biol Sci 2017 372 1731 20160290 10.1098/rstb.2016.0290 28847827 

  37. 37. Yen K Vinayachandran V Pugh BF SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near + 1 nucleosomes Cell. 2013 154 6 1246 1256 10.1016/j.cell.2013.08.043 24034248 

  38. 38. Papamichos-Chronakis M Watanabe S Rando OJ Peterson CL Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity Cell. 2011 144 2 200 213 10.1016/j.cell.2010.12.021 21241891 

  39. 39. Watanabe S Radman-Livaja M Rando OJ Peterson CL A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme Science. 2013 340 6129 195 199 10.1126/science.1229758 23580526 

  40. 40. Watanabe S Peterson CL Response to Comment on “A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme” Science 2016 353 6297 358 10.1126/science.aad6398 27463666 

  41. 41. Luk E Ranjan A Fitzgerald PC Mizuguchi G Huang Y Wei D Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome Cell. 2010 143 5 725 736 10.1016/j.cell.2010.10.019 21111233 

  42. 42. Wang F Ranjan A Wei D Wu C Comment on “A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme” Science 2016 353 6297 358 10.1126/science.aad5921 27463665 

  43. 43. Shen X Ranallo R Choi E Wu C Involvement of actin-related proteins in ATP-dependent chromatin remodeling Mol Cell 2003 12 1 147 155 10.1016/S1097-2765(03)00264-8 12887900 

  44. 44. Jin J Cai Y Yao T Gottschalk AJ Florens L Swanson SK A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex J Biol Chem 2005 280 50 41207 41212 10.1074/jbc.M509128200 16230350 

  45. 45. Krietenstein N Wal M Watanabe S Park B Peterson CL Pugh BF Genomic nucleosome organization reconstituted with pure proteins Cell 2016 167 709 721.e712 10.1016/j.cell.2016.09.045 27768892 

  46. 46. Oberbeckmann E Krietenstein N Niebauer V Wang Y Schall K Moldt M Genome information processing by the INO80 chromatin remodeler positions nucleosomes Nat Commun 2021 12 1 1 19 10.1038/s41467-020-20314-w 33397941 

  47. 47. Oberbeckmann E Niebauer V Watanabe S Farnung L Moldt M Schmid A Ruler elements in chromatin remodelers set nucleosome array spacing and phasing Nat Commun 2021 12 1 1 17 10.1038/s41467-020-20314-w 33397941 

  48. 48. Choi ES Cheon Y Kang K Lee D The Ino80 complex mediates epigenetic centromere propagation via active removal of histone H3 Nat Commun 2017 8 1 529 10.1038/s41467-017-00704-3 28904333 

  49. 49. Xue Y Pradhan SK Sun F Chronis C Tran N Su T Mot1, Ino80C, and NC2 function coordinately to regulate pervasive transcription in yeast and mammals Mol Cell 2017 67 594 607.e594 10.1016/j.molcel.2017.06.029 28735899 

  50. 50. Wang L Du Y Ward JM Shimbo T Lackford B Zheng X INO80 facilitates pluripotency gene activation in embryonic stem cell self-renewal, reprogramming, and blastocyst development Cell Stem Cell 2014 14 5 575 591 10.1016/j.stem.2014.02.013 24792115 

  51. 51. Lafon A Taranum S Pietrocola F Dingli F Loew D Brahma S INO80 chromatin remodeler facilitates release of RNA polymerase II from chromatin for ubiquitin-mediated proteasomal degradation Mol Cell 2015 60 5 784 796 10.1016/j.molcel.2015.10.028 26656161 

  52. 52. Klein-Brill A Joseph-Strauss D Appleboim A Friedman N Dynamics of chromatin and transcription during transient depletion of the RSC chromatin remodeling complex Cell Rep 2019 26 279 292.e275 10.1016/j.celrep.2018.12.020 30605682 

  53. 53. Morawska M Ulrich HD An expanded tool kit for the auxin-inducible degron system in budding yeast Yeast. 2013 30 9 341 351 10.1002/yea.2967 23836714 

  54. 54. Etchegaray JP Zhong L Li C Henriques T Ablondi E Nakadai T The histone deacetylase SIRT6 restrains transcription elongation via promoter-proximal pausing Mol Cell 2019 75 683 699.e687 10.1016/j.molcel.2019.06.034 31399344 

  55. 55. Victorino JF Fox MJ Smith-Kinnaman WR Peck Justice SA Burriss KH Boyd AK Zimmerly MA Chan RR Hunter GO Liu Y Mosley AL RNA Polymerase II CTD phosphatase Rtr1 fine-tunes transcription termination PLoS Genet 2020 16 3 e1008317 10.1371/journal.pgen.1008317 32187185 

  56. 56. Jordán-Pla A Gupta I de Miguel-Jiménez L Steinmetz LM Chávez S Pelechano V Chromatin-dependent regulation of RNA polymerases II and III activity throughout the transcription cycle Nucleic Acids Res 2015 43 2 787 802 10.1093/nar/gku1349 25550430 

  57. 57. Chen W Liu Y Zhu S Green CD Wei G Han JD Improved nucleosome-positioning algorithm iNPS for accurate nucleosome positioning from sequencing data Nat Commun 2014 5 1 4909 10.1038/ncomms5909 25233085 

  58. 58. Kubik S Bruzzone MJ Challal D Dreos R Mattarocci S Bucher P Opposing chromatin remodelers control transcription initiation frequency and start site selection Nat Struct Mol Biol 2019 26 8 744 754 10.1038/s41594-019-0273-3 31384063 

  59. 59. Kubik S, Bruzzone MJ, Shore D. Establishing nucleosome architecture and stability at promoters: roles of pioneer transcription factors and the RSC chromatin remodeler. Bioessays. 2017;39(5) 10.1002/bies.201600237. 

  60. 60. Schafer RW What is a Savitzky-Golay filter?[lecture notes] IEEE Signal Process Mag 2011 28 4 111 117 10.1109/MSP.2011.941097 

  61. 61. Chae S Ahn BY Byun K Cho YM Yu MH Lee B A systems approach for decoding mitochondrial retrograde signaling pathways Sci Signal 2013 6 rs4 10.1126/scisignal.2003266 23443683 

  62. 62. Crooks GE Hon G Chandonia JM Brenner SE WebLogo: a sequence logo generator Genome Res 2004 14 6 1188 1190 10.1101/gr.849004 15173120 

  63. 63. Bagchi DN Battenhouse AM Park D Iyer VR The histone variant H2A.Z in yeast is almost exclusively incorporated into the + 1 nucleosome in the direction of transcription Nucleic Acids Res 2020 48 1 157 170 31722407 

  64. 64. Soares LM He PC Chun Y Suh H Kim T Buratowski S Determinants of histone H3K4 methylation patterns Mol Cell 2017 68 773 785.e776 10.1016/j.molcel.2017.10.013 29129639 

  65. 65. Tosi A Haas C Herzog F Gilmozzi A Berninghausen O Ungewickell C Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex Cell. 2013 154 6 1207 1219 10.1016/j.cell.2013.08.016 24034245 

  66. 66. Yao W Beckwith SL Zheng T Young T Dinh VT Ranjan A Assembly of the Arp5 (Actin-related Protein) subunit involved in distinct INO80 chromatin remodeling activities J Biol Chem 2015 290 42 25700 25709 10.1074/jbc.M115.674887 26306040 

  67. 67. Yao W King DA Beckwith SL Gowans GJ Yen K Zhou C The INO80 complex requires the Arp5-Ies6 subcomplex for chromatin remodeling and metabolic regulation Mol Cell Biol 2016 36 6 979 991 10.1128/MCB.00801-15 26755556 

  68. 68. Lai B Gao W Cui K Xie W Tang Q Jin W Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing Nature. 2018 562 7726 281 285 10.1038/s41586-018-0567-3 30258225 

  69. 69. Heinz S Benner C Spann N Bertolino E Lin YC Laslo P Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities Mol Cell 2010 38 4 576 589 10.1016/j.molcel.2010.05.004 20513432 

  70. 70. Wu S Shi Y Mulligan P Gay F Landry J Liu H A YY1-INO80 complex regulates genomic stability through homologous recombination-based repair Nat Struct Mol Biol 2007 14 12 1165 1172 10.1038/nsmb1332 18026119 

  71. 71. Missra A Gilmour DS Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex Proc Natl Acad Sci U S A 2010 107 25 11301 11306 10.1073/pnas.1000681107 20534440 

  72. 72. Li J Liu Y Rhee HS Ghosh SK Bai L Pugh BF Kinetic competition between elongation rate and binding of NELF controls promoter-proximal pausing Mol Cell 2013 50 5 711 722 10.1016/j.molcel.2013.05.016 23746353 

  73. 73. Tramantano M Sun L Au C Labuz D Liu Z Chou M Constitutive turnover of histone H2A.Z at yeast promoters requires the preinitiation complex Elife 2016 5 5 10.7554/eLife.14243 

  74. 74. Radman-Livaja M Rando OJ Nucleosome positioning: how is it established, and why does it matter? Dev Biol 2010 339 2 258 266 10.1016/j.ydbio.2009.06.012 19527704 

  75. 75. Jiang C Pugh BF Nucleosome positioning and gene regulation: advances through genomics Nat Rev Genet 2009 10 3 161 172 10.1038/nrg2522 19204718 

  76. 76. Chen L Cai Y Jin J Florens L Swanson SK Washburn MP Subunit organization of the human INO80 chromatin remodeling complex: an evolutionarily conserved core complex catalyzes ATP-dependent nucleosome remodeling J Biol Chem 2011 286 13 11283 11289 10.1074/jbc.M111.222505 21303910 

  77. 77. Chen L Conaway RC Conaway JW Multiple modes of regulation of the human Ino80 SNF2 ATPase by subunits of the INO80 chromatin-remodeling complex Proc Natl Acad Sci U S A 2013 110 51 20497 20502 10.1073/pnas.1317092110 24297934 

  78. 78. Jimeno-González S Ceballos-Chávez M Reyes JC A positioned + 1 nucleosome enhances promoter-proximal pausing Nucleic Acids Res 2015 43 6 3068 3078 10.1093/nar/gkv149 25735750 

  79. 79. Uzun Ü, Brown T, Fischl H, Angel A, Mellor J. Spt4 facilitates the movement of RNA polymerase II through the + 2 nucleosomal barrier. bioRxiv. 2021; 10.1101/2021.03.03.433772. 

  80. 80. Booth GT Parua PK Sansó M Fisher RP Lis JT Cdk9 regulates a promoter-proximal checkpoint to modulate RNA polymerase II elongation rate in fission yeast Nat Commun 2018 9 1 543 10.1038/s41467-018-03006-4 29416031 

  81. 81. Hou L Wang Y Liu Y Zhang N Shamovsky I Nudler E Paf1C regulates RNA polymerase II progression by modulating elongation rate Proc Natl Acad Sci U S A 2019 116 29 14583 14592 10.1073/pnas.1904324116 31249142 

  82. 82. Kopylova E Noé L Touzet H SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data Bioinformatics. 2012 28 24 3211 3217 10.1093/bioinformatics/bts611 23071270 

  83. 83. Langmead B Trapnell C Pop M Salzberg SL Ultrafast and memory-efficient alignment of short DNA sequences to the human genome Genome Biol 2009 10 3 R25 10.1186/gb-2009-10-3-r25 19261174 

  84. 84. Quinlan AR Hall IM BEDTools: a flexible suite of utilities for comparing genomic features Bioinformatics. 2010 26 6 841 842 10.1093/bioinformatics/btq033 20110278 

  85. 85. Kent WJ Zweig AS Barber G Hinrichs AS Karolchik D BigWig and BigBed: enabling browsing of large distributed datasets Bioinformatics. 2010 26 17 2204 2207 10.1093/bioinformatics/btq351 20639541 

  86. 86. Marks H Kalkan T Menafra R Denissov S Jones K Hofemeister H The transcriptional and epigenomic foundations of ground state pluripotency Cell. 2012 149 3 590 604 10.1016/j.cell.2012.03.026 22541430 

  87. 87. Zhang Y Liu T Meyer CA Eeckhoute J Johnson DS Bernstein BE Model-based analysis of ChIP-Seq (MACS) Genome Biol 2008 9 9 R137 10.1186/gb-2008-9-9-r137 18798982 

  88. 88. Cheon Y, Han S, Kim T, Hwang D, Lee D. The chromatin remodeler Ino80 mediates RNAPII pausing site determination. GSE158622. Gene Expression Omnibus. 2021; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158622 . 

  89. 89. Booth GT, Wang IX, Cheung VG, Lis JT. Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast. GSE76142. Gene Expression Omnibus. 2016; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76142 . 

  90. 90. Churchman LS, Weissman JS. Nascent transcript sequencing visualizes transcription at nucleotide resolution. GSE25107. Gene Expression Omnibus. 2011; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25107 . 

  91. 91. Victorino JF, Fox MJ, Smith-Kinnaman WR, Peck Justice SA, Burriss KH, Boyd AK, et al. RNA Polymerase II CTD phosphatase Rtr1 fine-tunes transcription termination. GSE87657. Gene Expression Omnibus. 2016; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87657 . 

  92. 92. Jordán-Pla A, Gupta I, de Miguel-Jiménez L, Steinmetz LM, Chávez S, Pelechano V, et al. Chromatin-dependent regulation of RNA polymerases II and III activity throughout the transcription cycle. GSE58859. Gene Expression Omnibus. 2014; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58859 . 

  93. 93. Klein-Brill A, Joseph-Strauss D, Appleboim A, Friedman N. Dynamics of chromatin and transcription during transient depletion of the RSC chromatin remodeling complex. GSE118214. Gene Expression Omnibus. 2019; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118214 . 

  94. 94. Kubik S, Bruzzone MJ, Challal D, Dreos R, Mattarocci S, Bucher P, et al. Opposing chromatin remodelers control transcription initiation frequency and start site selection. GSE115412. Gene Expression Omnibus. 2019; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115412 . 

  95. 95. Soares LM, He PC, Chun Y, Suh H, Kim T, Buratowski S. Determinants of histone H3K4 methylation patterns. GSE95356. Gene Expression Omnibus. 2017; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE95356 . 

  96. 96. Etchegaray JP, Zhong L, Li C, Henriques T, Ablondi E, Nakadai T, et al. The histone deacetylase SIRT6 restrains transcription elongation via promoter-proximal pausing. GSE130691. Gene Expression Omnibus. 2019; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130691 . 

  97. 97. Lai B, Gao W, Cui K, Xie W, Tang Q, Jin W, et al. Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing. GSE96688. Gene Expression Omnibus. 2018; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96688 . 

  98. 98. Marks H, Kalkan T, Menafra R, Denissov S, Jones K, Hofemeister H, et al. The transcriptional and epigenomic foundations of ground state pluripotency. GSE23943. Gene Expression Omnibus. 2012; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23943 . 

  99. 99. Wang L, Du Y, Ward JM, Shimbo T, Lackford B, Zheng X, et al. INO80 facilitates pluripotency gene activation in embryonic stem cell self-renewal, reprogramming, and blastocyst development. GSE49137. Gene Expression Omnibus. 2014; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49137 . 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로