$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Production of Recombinant Horseradish Peroxidase in an Engineered Cell-free Protein Synthesis System 원문보기

Frontiers in bioengineering and biotechnology, v.9, 2021년, pp.778496 -   

Park, Yu-Jin ,  Kim, Dong-Myung

Abstract AI-Helper 아이콘AI-Helper

One of the main advantages of a cell-free synthesis system is that the synthetic machinery of cells can be modularized and re-assembled for desired purposes. In this study, we attempted to combine the translational activity of Escherichia coli extract with a heme synthesis pathway for the functional...

Keyword

참고문헌 (36)

  1. Ahn J.-H. Chu H.-S. Kim T.-W. Oh I.-S. Choi C.-Y. Hahn G.-H. ( 2005 ). Cell-free Synthesis of Recombinant Proteins from PCR-Amplified Genes at a Comparable Productivity to that of Plasmid-Based Reactions . Biochem. Biophys. Res. Commun. 338 , 1346 – 1352 . 10.1016/j.bbrc.2005.10.094 16263088 

  2. Ahn J.-H. Keum J.-W. Kim D.-M. ( 2008 ). High-throughput, Combinatorial Engineering of Initial Codons for Tunable Expression of Recombinant Proteins . J. Proteome Res. 7 , 2107 – 2113 . 10.1021/pr700856s 18386915 

  3. Ahn J.-H. Keum J.-W. Kim D.-M. ( 2011 ). Expression Screening of Fusion Partners from an E. coli Genome for Soluble Expression of Recombinant Proteins in a Cell-Free Protein Synthesis System . PLoS One 6 , e26875 . 10.1371/journal.pone.0026875 22073212 

  4. Anderson M. J. Stark J. C. Hodgman C. E. Jewett M. C. ( 2015 ). Energizing Eukaryotic Cell-free Protein Synthesis with Glucose Metabolism . FEBS Lett. 589 , 1723 – 1727 . 10.1016/j.febslet.2015.05.045 26054976 

  5. Baneyx F. Mujacic M. ( 2004 ). Recombinant Protein Folding and Misfolding in Escherichia coli . Nat. Biotechnol. 22 , 1399 – 1408 . 10.1038/nbt1029 15529165 

  6. Bradford M. M. ( 1976 ). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding . Anal. Biochem. 72 , 248 – 254 . 10.1016/0003-2697(76)90527-3 942051 

  7. Bujara M. Schümperli M. Pellaux R. Heinemann M. Panke S. ( 2011 ). Optimization of a Blueprint for In Vitro Glycolysis by Metabolic Real-Time Analysis . Nat. Chem. Biol. 7 , 271 – 277 . 10.1038/nchembio.541 21423171 

  8. Byun J.-Y. Lee K.-H. Shin Y.-B. Kim D.-M. ( 2019 ). Cascading Amplification of Immunoassay Signal by Cell-free Expression of Firefly Luciferase from Detection Antibody-Conjugated DNA in an Escherichia coli Extract . ACS Sens. 4 , 93 – 99 . 10.1021/acssensors.8b00949 30582797 

  9. Carlson E. D. Gan R. Hodgman C. E. Jewett M. C. ( 2012 ). Cell-free Protein Synthesis: Applications Come of Age . Biotechnol. Adv. 30 , 1185 – 1194 . 10.1016/j.biotechadv.2011.09.016 22008973 

  10. Chauhan S. Kang T. J. ( 2018 ). Soluble Expression of Horseradish Peroxidase in Escherichia coli and its Facile Activation . J. Biosci. Bioeng. 126 , 431 – 435 . 10.1016/j.jbiosc.2018.04.004 29691194 

  11. de Oliveira F. K. Santos L. O. Buffon J. G. ( 2021 ). Mechanism of Action, Sources, and Application of Peroxidases . Food Res. Int. 143 , 110266 . 10.1016/j.foodres.2021.110266 33992367 

  12. Fruk L. Kuo C.-H. Torres E. Niemeyer C. M. ( 2009 ). Apoenzyme Reconstitution as a Chemical Tool for Structural Enzymology and Biotechnology . Angew. Chem. Int. Ed. 48 , 1550 – 1574 . 10.1002/anie.200803098 

  13. Ghag S. B. Adki V. S. Ganapathi T. R. Bapat V. A. ( 2021 ). Plant Platforms for Efficient Heterologous Protein Production . Biotechnol. Bioprocess Eng. 26 , 546 – 567 . 10.1007/s12257-020-0374-1 

  14. Han M. Wang W. Zhou J. Gong X. Xu C. Li Q. ( 2021 ). Activation of the Unfolded Protein Response via Co-Expression of the HACi Gene Enhances Expression of Recombinant Elastase in Pichia Pastoris . Biotechnol. Bioprocess Eng. 25 , 302 – 307 . 10.1007/s12257-019-0381-2 

  15. Jewett M. C. Calhoun K. A. Voloshin A. Wuu J. J. Swartz J. R. ( 2008 ). An Integrated Cell‐free Metabolic Platform for Protein Production and Synthetic Biology . Mol. Syst. Biol. 4 , 220 . 10.1038/msb.2008.57 18854819 

  16. Jin X. Hong S. H. ( 2018 ). Cell-free Protein Synthesis for Producing 'Difficult-To-Express' Proteins . Biochem. Eng. J. 138 , 156 – 164 . 10.1016/j.bej.2018.07.013 

  17. Kasi D. Nah H. J. Catherine C. Kim E.-S. Han K. Ha J.-C. ( 2017 ). Enhanced Production of Soluble Recombinant Proteins with an In Situ -removable Fusion Partner in a Cell-free Synthesis System . Biotechnol. J. 12 , 1700125 . 10.1002/biot.201700125 

  18. Kelley L. A. Mezulis S. Yates C. M. Wass M. N. Sternberg M. J. E. ( 2015 ). The Phyre2 Web portal for Protein Modeling, Prediction and Analysis . Nat. Protoc. 10 , 845 – 858 . 10.1038/nprot.2015.053 25950237 

  19. Kim D.-M. Swartz J. R. ( 2001 ). Regeneration of Adenosine Triphosphate from Glycolytic Intermediates for Cell-free Protein Synthesis . Biotechnol. Bioeng. 74 , 309 – 316 . 10.1002/bit.1121 11410855 

  20. Kim D.-M. Swartz J. R. ( 2004 ). Efficient Production of a Bioactive, Multiple Disulfide-Bonded Protein Using Modified Extracts ofEscherichia Coli . Biotechnol. Bioeng. 85 , 122 – 129 . 10.1002/bit.10865 14704994 

  21. Kim T.-W. Oh I.-S. Keum J.-W. Kwon Y.-C. Byun J.-Y. Lee K.-H. ( 2007 ). Prolonged Cell-free Protein Synthesis Using Dual Energy Sources: Combined Use of Creatine Phosphate and Glucose for the Efficient Supply of ATP and Retarded Accumulation of Phosphate . Biotechnol. Bioeng. 97 ( 97 ), 1510 – 1515 . 10.1002/bit.21337 17238210 

  22. Krainer F. W. Glieder A. ( 2015 ). An Updated View on Horseradish Peroxidases: Recombinant Production and Biotechnological Applications . Appl. Microbiol. Biotechnol. 99 , 1611 – 1625 . 10.1007/s00253-014-6346-7 25575885 

  23. Kwon Y.-C. Oh I.-S. Lee N. Lee K.-H. Yoon Y. J. Lee E. Y. ( 2013 ). Integrating Cell-free Biosyntheses of Heme Prosthetic Group and Apoenzyme for the Synthesis of Functional P450 Monooxygenase . Biotechnol. Bioeng. 110 , 1193 – 1200 . 10.1002/bit.24785 23172243 

  24. Lee K.-H. Kim D.-M. ( 2018 ). Recent Advances in Development of Cell-free Protein Synthesis Systems for Fast and Efficient Production of Recombinant Proteins . FEMS Microbiol. Lett. 365 . 10.1093/femsle/fny174 

  25. Lopes G. R. Pinto D. C. G. A. Silva A. M. S. ( 2014 ). Horseradish Peroxidase (HRP) as a Tool in green Chemistry . RSC Adv. 4 , 37244 – 37265 . 10.1039/C4RA06094F 

  26. Meyer A. Pellaux R. Panke S. ( 2007 ). Bioengineering Novel In Vitro Metabolic Pathways Using Synthetic Biology . Curr. Opin. Microbiol. 10 , 246 – 253 . 10.1016/j.mib.2007.05.009 17548240 

  27. Park Y. J. Lee K.-H. Kim D.-M. ( 2017 ). Assessing Translational Efficiency by a Reporter Protein Co-expressed in a Cell-free Synthesis System . Anal. Biochem. 518 , 139 – 142 . 10.1016/j.ab.2016.11.019 27908596 

  28. Regalado C. García-Almendárez B. E. Duarte-Vázquez M. A. ( 2004 ). Biotechnological Applications of Peroxidases . Phytochemistry Rev. 3 , 243 – 256 . 10.1023/b:phyt.0000047797.81958.69 

  29. Rosano G. n. L. Ceccarelli E. A. ( 2014 ). Recombinant Protein Expression in Escherichia coli : Advances and Challenges . Front. Microbiol. 5 , 172 . 10.3389/fmicb.2014.00172 24860555 

  30. Schinn S.-M. Broadbent A. Bradley W. T. Bundy B. C. ( 2016 ). Protein Synthesis Directly from PCR: Progress and Applications of Cell-free Protein Synthesis with Linear DNA . New Biotechnol. 33 , 480 – 487 . 10.1016/j.nbt.2016.04.002 

  31. Schlapschy M. Grimm S. Skerra A. ( 2006 ). A System for Concomitant Overexpression of Four Periplasmic Folding Catalysts to Improve Secretory Protein Production in Escherichia coli . Protein Eng. Des. Sel. 19 , 385 – 390 . 10.1093/protein/gzl018 16720693 

  32. Schümperli M. Pellaux R. Panke S. ( 2007 ). Chemical and Enzymatic Routes to Dihydroxyacetone Phosphate . Appl. Microbiol. Biotechnol. 75 , 33 – 45 . 10.1007/s00253-007-0882-3 17318530 

  33. Veitch N. C. ( 2004 ). Horseradish Peroxidase: a Modern View of a Classic Enzyme . Phytochemistry 65 , 249 – 259 . 10.1016/j.phytochem.2003.10.022 14751298 

  34. Woodard S. I. Dailey H. A. ( 1995 ). Regulation of Heme Biosynthesis in Escherichia coli . Arch. Biochem. Biophys. 316 , 110 – 115 . 10.1006/abbi.1995.1016 7840603 

  35. Yates C. M. Filippis I. Kelley L. A. Sternberg M. J. E. ( 2014 ). SuSPect: Enhanced Prediction of Single Amino Acid Variant (SAV) Phenotype Using Network Features . J. Mol. Biol. 426 , 2692 – 2701 . 10.1016/j.jmb.2014.04.026 24810707 

  36. Zhu B. Mizoguchi T. Kojima T. Nakano H. ( 2015 ). Ultra-high-throughput Screening of an In Vitro -synthesized Horseradish Peroxidase Displayed on Microbeads Using Cell Sorter . PLoS ONE 10 , e0127479 . 10.1371/journal.pone.0127479 25993095 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로