최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Membranes, v.11 no.10, 2021년, pp.769 -
Park, In-Kee (Department of Energy Engineering, Dankook University, Cheonan 31116, Korea) , Hou, Jian (inkee0149@gmail.com (I.-K.P.)) , Yun, Jaehan (houjimmy@naver.com (J.H.)) , Lee, Hee-Dae (ruri7220@naver.com (J.Y.)) , Lee, Chang-Hyun (Department of Energy Engineering, Dankook University, Cheonan 31116, Korea)
Water resource pollution by nitrate-nitrogen, mainly caused by anthropogenic causes, induces eutrophication of water resources, and indicates the degree of organic pollution. Therefore, this study devised a method for coating PFSA ionomer with excellent chemical resistance without disassembling the ...
1. Moura R.B. Damianovic M.H.R.Z. Foresti E. Nitrogen and carbon removal from synthetic wastewater in a vertical structured-bed reactor under intermittent aeration J. Environ. Manag. 2012 98 163 167 10.1016/j.jenvman.2012.01.009 22277346
2. Lejarazu-Larrañaga A. Ortiz J.M. Molina S. Zhao Y. García-Calvo E. Nitrate-selective anion exchange membranes prepared using discarded reverse osmosis membranes as support Membranes 2020 10 377 10.3390/membranes10120377 33261117
3. Vo T.K.Q. Lee J.J. Kang J.S. Park S. Kim H.S. Nitrogen removal by sulfur-based carriers in a membrane bioreactor (MBR) Membranes 2018 8 115 10.3390/membranes8040115 30469519
4. Schoeman J.J. Nitrate-nitrogen removal with small-scale reverse osmosis, electrodialysis and ion-exchange units in rural areas Water SA 2009 35 721 728 10.4314/wsa.v35i5.49198
5. Fux I. Birnhack L. Tang S.C.N. Lahav O. Removal of nitrate from drinking water by ion-exchange followed by nzvi-based reduction and electrooxidation of the ammonia product to N 2 (g) ChemEngineering 2017 1 2 10.3390/chemengineering1010002
7. Henze M. Capabilities of biological nitrogen removal processes from wastewater Water Sci. Technol. 1991 23 669 679 10.2166/wst.1991.0517
8. Aslan S. Kapdan I.K. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae Ecol. Eng. 2006 28 64 70 10.1016/j.ecoleng.2006.04.003
9. Epsztein R. Nir O. Lahav O. Green M. Selective nitrate removal from groundwater using a hybrid nanofiltration-reverse osmosis filtration scheme Chem. Eng. J. 2015 279 372 378 10.1016/j.cej.2015.05.010
10. Min J.-H. Kim H.-S. The removal of Nitrate-nitrogen from ground water by electrodialysis J. Korean Soc. Water Wastewater 2008 22 307 313
11. Zou L. Zhang S. Liu J. Cao Y. Qian G. Li Y.Y. Xu Z.P. Nitrate removal from groundwater using negatively charged nanofiltration membrane Environ. Sci. Pollut. Res. 2019 26 34197 34204 10.1007/s11356-018-3829-6
12. Ahn J. Ali M.I. Lim J.H. Park Y. Park I.K. Duchesne D. Chen L. Kim J. Lee C.H. Highly dispersed CeOx hybrid nanoparticles for perfluorinated sulfonic acid ionomer–poly(Tetrafluoethylene) reinforced membranes with improved service life Membranes 2021 11 143 10.3390/membranes11020143 33670579
13. Ahn C.Y. Ahn J. Kang S.Y. Kim O.H. Lee D.W. Lee J.H. Shim J.G. Lee C.H. Cho Y.H. Sung Y.E. Enhancement of service life of polymer electrolyte fuel cells through application of nanodispersed ionomer Sci. Adv. 2020 6 1 10 10.1126/sciadv.aaw0870
14. Kreuer K.D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells J. Memb. Sci. 2001 185 29 39 10.1016/S0376-7388(00)00632-3
15. Park C.H. Kim H.K. Lee C.H. Park H.B. Lee Y.M. Nafion ® nanocomposite membranes: Effect of fluorosurfactants on hydrophobic silica nanoparticle dispersion and direct methanol fuel cell performance J. Power Sources 2009 194 646 654 10.1016/j.jpowsour.2009.06.053
16. Kim S. Yuk S. Kim H.G. Choi C. Kim R. Lee J.Y. Hong Y.T. Kim H.T. A hydrocarbon/Nafion bilayer membrane with a mechanical nano-fastener for vanadium redox flow batteries J. Mater. Chem. A 2017 5 17279 17286 10.1039/C7TA02921G
17. Marinoiu A. Carcadea E. Sacca A. Carbone A. Sisu C. Dogaru A. Raceanu M. One-step synthesis of graphene supported platinum nanoparticles as electrocatalyst for PEM fuel cells Int. J. Hydrog. Energy 2020 46 12242 12253 10.1016/j.ijhydene.2020.04.183
18. Lei C. Bessarabov D. Ye S. Xie Z. Holdcroft S. Navessin T. Low equivalent weight short-side-chain perfluorosulfonic acid ionomers in fuel cell cathode catalyst layers J. Power Sources 2011 196 6168 6176 10.1016/j.jpowsour.2011.03.024
19. Kondratenko M.S. Elmanovich I.V. Gallyamov M.O. Polymer materials for electrochemical applications: Processing in supercritical fluids J. Supercrit. Fluids 2017 127 229 246 10.1016/j.supflu.2017.03.011
20. Campardelli R. Baldino L. Reverchon E. Supercritical fluids applications in nanomedicine J. Supercrit. Fluids 2015 101 193 214 10.1016/j.supflu.2015.01.030
21. Knez . Markoi E. Leitgeb M. Primoi M. Knez Hrni M. Škerget M. Industrial applications of supercritical fluids: A review Energy 2014 77 235 243 10.1016/j.energy.2014.07.044
22. Lee S.Y. Kang N.R. Shin D.W. Lee C.H. Lee K.S. Guiver M.D. Li N. Lee Y.M. Morphological transformation during cross-linking of a highly sulfonated poly(phenylene sulfide nitrile) random copolymer Energy Environ. Sci. 2012 5 9795 9802 10.1039/c2ee21992a
23. Hamrock S.J. Final Report—Membranes and MEA’s for Dry, Hot Operating Conditions U.S. Department of Energy Washinton DC, USA 2011
24. Starkweather H.W. Jr. Moore G.E. Hansen J.E. Roder T.M. Brooks R.E. Effect of crystallinity on the properties of nylons J. Polym. Sci. 1956 21 189 204 10.1002/pol.1956.120219803
25. Roy Y. Warsinger D.M. Lienhard J.H. Effect of temperature on ion transport in nanofiltration membranes: Diffusion, convection and electromigration Desalination 2017 420 241 257 10.1016/j.desal.2017.07.020
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.