$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Influence of Specimen Surface Roughness on Hydrogen Embrittlement Induced in Austenitic Steels during In-Situ Small Punch Testing in High-Pressure Hydrogen Environments 원문보기

Metals, v.11 no.10, 2021년, pp.1579 -   

Shin, Hyung-Seop (Department of Mechanical Design Engineering, Andong National University, 1375 Gyeongdong-ro, Andong 36729, Korea) ,  Yeo, Juho (Department of Mechanical Design Engineering, Andong National University, 1375 Gyeongdong-ro, Andong 36729, Korea) ,  Baek, Un-Bong (Team of Hydrogen Energy Materials Research, Korea Research Institute of Standards and Science, Daejeon 34113, Korea)

Abstract AI-Helper 아이콘AI-Helper

An in-situ small punch (SP) test method has recently been developed as a simple screening technique for evaluating the properties of metallic materials used in high-pressure hydrogen environments. With this method, the test conditions including temperature and gas pressure can easily be adjusted to ...

참고문헌 (28)

  1. Nagumo The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview Acta Mater. 2019 10.1016/j.actamat.2018.12.013 165 722 

  2. Zhang Effect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures Acta Mater. 2008 10.1016/j.actamat.2008.03.022 56 3414 

  3. Michler Influence of macro segregation on hydrogen environment embrittlement of SUS 316L stainless steel Int. J. Hydrogen Energy 2009 10.1016/j.ijhydene.2009.02.015 34 3201 

  4. Michler On the physical differences between tensile testing of type 304 and 316 austenitic stainless steels with internal hydrogen and in external hydrogen Int. J. Hydrogen Energy 2010 10.1016/j.ijhydene.2010.06.018 35 9736 

  5. Yamabe Hydrogen diffusivity and tensile-ductility loss of solution-treated austenitic stainless steels with external and internal hydrogen Int. J. Hydrogen Energy 2017 10.1016/j.ijhydene.2017.04.055 42 13289 

  6. ASTM International (2016). Standard Test Method for Determination of Susceptibility of Metals to Embrittlement in Hydrogen Containing Environments at High Pressure, High Temperature, or Both, ASTM International. 

  7. Zheng Development of high pressure gaseous hydrogen storage technologies Int. J. Hydrogen Energy 2012 10.1016/j.ijhydene.2011.02.125 37 1048 

  8. Matsunaga Slow strain rate tensile and fatigue properties of Cr-Mo and carbon steels in a 115 MPa hydrogen gas atmosphere Int. J. Hydrogen Energy 2015 10.1016/j.ijhydene.2015.02.098 40 5739 

  9. Michler Hydrogen environment embrittlement testing at low temperatures and high pressures Corrosion. Sci. 2008 10.1016/j.corsci.2008.09.025 50 3519 

  10. Ogata Evaluation of hydrogen embrittlement by internal high-pressure hydrogen environment in specimen J. Jpn. Inst. Metals Mater. 2008 10.2320/jinstmet.72.125 72 125 

  11. Ogata Influence of high pressure hydrogen environment on tensile and fatigue properties of stainless steels at low temperature AIP Conf. Proc. 2012 10.1063/1.4712078 1435 39 

  12. Arroyo Small punch test methodologies for the analysis of the hydrogen embrittlement of structural steels Theoret. Appl. Fract. Mech. 2016 10.1016/j.tafmec.2016.09.005 86 89 

  13. Komazaki Effect of morphology of copper precipitation particles on hydrogen embrittlement behavior in Cu-added ultralow carbon steel Mater. Trans. 2002 10.2320/matertrans.43.2213 43 2213 

  14. European Committee for Standardization (2007). Small Punch Test Method for Metallic Materials-Part B: A Code of Practice for Small Punch Testing for Tensile and Fracture Behavior, European Committee for Standardization. 

  15. Belzunce Effect of hydrogen embrittlement on the tensile properties of CrMoV steels by means of the small punch test Mater. Sci. Eng. A 2016 10.1016/j.msea.2016.03.134 664 165 

  16. Komazaki Damage evaluation of a welded joint in a long-term service exposed boiler by using a small punch creep test ISIJ Int. 2007 10.2355/isijinternational.47.1228 47 1228 

  17. Shin Establishment of an in-situ small punch test method for characterizing hydrogen embrittlement behaviors under hydrogen gas environments and new influencing factor Int. J. Hydrogen Energy 2019 10.1016/j.ijhydene.2019.07.029 44 23472 

  18. Shin Development of evaluation technique for hydrogen embrittlement behavior of metallic materials using in-situ SP testing under pressurized hydrogen gas conditions Trans. Korean Soc. Mech. Eng. A 2011 10.3795/KSME-A.2011.35.11.1377 35 1377 

  19. International Organization for Standardization (2017). Transportable Gas Cylinders-Compatibility of Cylinder and Valve Materials with Gas Contents-Part 4: Test Methods for Selecting Steels Resistant to Hydrogen Embrittlement, ISO. 

  20. 10.1115/PVP2020-21241 Shin, H.S., Yeo, J.H., Custodio, N.A., Baek, U.B., and Nahm, S.H. (2020, January 3). Evaluation of material compatibility for hydrogen applications using performance factors obtained by in-situ SP test. Proceedings of the ASME 2020 Pressure Vessels and Piping Conference, Virtual. PVP2020-21241. 

  21. Bae Quantitative evaluation of hydrogen embrittlement susceptibility in various steels for energy use using an in-situ small punch test Int. J. Hydrogen Energy 2021 10.1016/j.ijhydene.2021.03.130 46 20107 

  22. Kentish Stress corrosion cracking of gas pipelines-Effect of surface roughness, orientations and flattening Corros. Sci. 2007 10.1016/j.corsci.2006.12.014 44 2521 

  23. Queiroga Influence of machining parameters on surface roughness and susceptibility to hydrogen embrittlement of austenitic stainless steels Int. J. Hydrogen Energy 2019 10.1016/j.ijhydene.2019.09.139 44 29027 

  24. Acharyya Surface working of 304L stainless steel: Impact on microstructure, electrochemical behavior and SCC resistance Mater. Charact. 2012 10.1016/j.matchar.2012.07.008 72 68 

  25. 10.1115/PVP2019-93492 Ogata, T., and Ono, Y. (2019, January 14-19). Influence of roughness of inner surface of simple mechanical testing method to evaluate influence of high pressure hydrogen gas. Proceedings of the ASME 2019 Pressure Vessels and Piping Conference, San Antonio, TX, USA. PVP2019-93492. 

  26. Richardson Influence of surface finish on small punch testing of 9Cr Eurofer-97 steel J. Test. Eval. 2020 10.1520/JTE20180619 48 1310 

  27. International Organization for Standardization (1997). Geometrical Product Specifications (GPS)-Surface Texture: Profile Method-Terms, Definitions and Surface Texture Parameters, ISO. 

  28. 10.1201/9781315372051 Karthik, V., Kasiviswanathan, K.V., and Raj, B. (2016). Miniaturized Testing of Engineering Materials, Taylor & Francis. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로