최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Metals, v.11 no.10, 2021년, pp.1579 -
Shin, Hyung-Seop (Department of Mechanical Design Engineering, Andong National University, 1375 Gyeongdong-ro, Andong 36729, Korea) , Yeo, Juho (Department of Mechanical Design Engineering, Andong National University, 1375 Gyeongdong-ro, Andong 36729, Korea) , Baek, Un-Bong (Team of Hydrogen Energy Materials Research, Korea Research Institute of Standards and Science, Daejeon 34113, Korea)
An in-situ small punch (SP) test method has recently been developed as a simple screening technique for evaluating the properties of metallic materials used in high-pressure hydrogen environments. With this method, the test conditions including temperature and gas pressure can easily be adjusted to ...
Nagumo The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview Acta Mater. 2019 10.1016/j.actamat.2018.12.013 165 722
Zhang Effect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures Acta Mater. 2008 10.1016/j.actamat.2008.03.022 56 3414
Michler Influence of macro segregation on hydrogen environment embrittlement of SUS 316L stainless steel Int. J. Hydrogen Energy 2009 10.1016/j.ijhydene.2009.02.015 34 3201
Michler On the physical differences between tensile testing of type 304 and 316 austenitic stainless steels with internal hydrogen and in external hydrogen Int. J. Hydrogen Energy 2010 10.1016/j.ijhydene.2010.06.018 35 9736
Yamabe Hydrogen diffusivity and tensile-ductility loss of solution-treated austenitic stainless steels with external and internal hydrogen Int. J. Hydrogen Energy 2017 10.1016/j.ijhydene.2017.04.055 42 13289
ASTM International (2016). Standard Test Method for Determination of Susceptibility of Metals to Embrittlement in Hydrogen Containing Environments at High Pressure, High Temperature, or Both, ASTM International.
Zheng Development of high pressure gaseous hydrogen storage technologies Int. J. Hydrogen Energy 2012 10.1016/j.ijhydene.2011.02.125 37 1048
Matsunaga Slow strain rate tensile and fatigue properties of Cr-Mo and carbon steels in a 115 MPa hydrogen gas atmosphere Int. J. Hydrogen Energy 2015 10.1016/j.ijhydene.2015.02.098 40 5739
Michler Hydrogen environment embrittlement testing at low temperatures and high pressures Corrosion. Sci. 2008 10.1016/j.corsci.2008.09.025 50 3519
Ogata Evaluation of hydrogen embrittlement by internal high-pressure hydrogen environment in specimen J. Jpn. Inst. Metals Mater. 2008 10.2320/jinstmet.72.125 72 125
Arroyo Small punch test methodologies for the analysis of the hydrogen embrittlement of structural steels Theoret. Appl. Fract. Mech. 2016 10.1016/j.tafmec.2016.09.005 86 89
Komazaki Effect of morphology of copper precipitation particles on hydrogen embrittlement behavior in Cu-added ultralow carbon steel Mater. Trans. 2002 10.2320/matertrans.43.2213 43 2213
European Committee for Standardization (2007). Small Punch Test Method for Metallic Materials-Part B: A Code of Practice for Small Punch Testing for Tensile and Fracture Behavior, European Committee for Standardization.
Belzunce Effect of hydrogen embrittlement on the tensile properties of CrMoV steels by means of the small punch test Mater. Sci. Eng. A 2016 10.1016/j.msea.2016.03.134 664 165
Komazaki Damage evaluation of a welded joint in a long-term service exposed boiler by using a small punch creep test ISIJ Int. 2007 10.2355/isijinternational.47.1228 47 1228
Shin Establishment of an in-situ small punch test method for characterizing hydrogen embrittlement behaviors under hydrogen gas environments and new influencing factor Int. J. Hydrogen Energy 2019 10.1016/j.ijhydene.2019.07.029 44 23472
International Organization for Standardization (2017). Transportable Gas Cylinders-Compatibility of Cylinder and Valve Materials with Gas Contents-Part 4: Test Methods for Selecting Steels Resistant to Hydrogen Embrittlement, ISO.
10.1115/PVP2020-21241 Shin, H.S., Yeo, J.H., Custodio, N.A., Baek, U.B., and Nahm, S.H. (2020, January 3). Evaluation of material compatibility for hydrogen applications using performance factors obtained by in-situ SP test. Proceedings of the ASME 2020 Pressure Vessels and Piping Conference, Virtual. PVP2020-21241.
Bae Quantitative evaluation of hydrogen embrittlement susceptibility in various steels for energy use using an in-situ small punch test Int. J. Hydrogen Energy 2021 10.1016/j.ijhydene.2021.03.130 46 20107
Kentish Stress corrosion cracking of gas pipelines-Effect of surface roughness, orientations and flattening Corros. Sci. 2007 10.1016/j.corsci.2006.12.014 44 2521
Queiroga Influence of machining parameters on surface roughness and susceptibility to hydrogen embrittlement of austenitic stainless steels Int. J. Hydrogen Energy 2019 10.1016/j.ijhydene.2019.09.139 44 29027
Acharyya Surface working of 304L stainless steel: Impact on microstructure, electrochemical behavior and SCC resistance Mater. Charact. 2012 10.1016/j.matchar.2012.07.008 72 68
10.1115/PVP2019-93492 Ogata, T., and Ono, Y. (2019, January 14-19). Influence of roughness of inner surface of simple mechanical testing method to evaluate influence of high pressure hydrogen gas. Proceedings of the ASME 2019 Pressure Vessels and Piping Conference, San Antonio, TX, USA. PVP2019-93492.
Richardson Influence of surface finish on small punch testing of 9Cr Eurofer-97 steel J. Test. Eval. 2020 10.1520/JTE20180619 48 1310
International Organization for Standardization (1997). Geometrical Product Specifications (GPS)-Surface Texture: Profile Method-Terms, Definitions and Surface Texture Parameters, ISO.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.