$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] CRIF1 Deficiency Increased Homocysteine Production by Disrupting Dihydrofolate Reductase Expression in Vascular Endothelial Cells 원문보기

Antioxidants, v.10 no.11, 2021년, pp.1645 -   

Lee, Ikjun (Department of Physiology and Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Korea) ,  Piao, Shuyu (tw2622@gmail.com (I.L.)) ,  Kim, Seonhee (piaoshuyu@cnu.ac.kr (S.P.)) ,  Nagar, Harsha (wlxlsunny@naver.com (S.K.)) ,  Choi, Su-Jeong (harsha_nagar2002@yahoo.com (H.N.)) ,  Jeon, Byeong Hwa (01030028473@naver.com (S.-J.C.)) ,  Oh, Sang-Ha (bhjeon@cnu.ac.kr (B.H.J.)) ,  Irani, Kaikobad (Department of Physiology and Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Korea) ,  Kim, Cuk-Seong (tw2622@gmail.com (I.L.))

Abstract AI-Helper 아이콘AI-Helper

Elevated plasma homocysteine levels can induce vascular endothelial dysfunction; however, the mechanisms regulating homocysteine metabolism in impaired endothelial cells are currently unclear. In this study, we deleted the essential mitoribosomal gene CR6 interacting factor 1 (CRIF1) in human umbili...

Keyword

참고문헌 (45)

  1. 1. Graham I.M. Daly L.E. Refsum H.M. Robinson K. Brattstrom L.E. Ueland P.M. Palma-Reis R.J. Boers G.H. Sheahan R.G. Israelsson B. Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project JAMA 1997 277 1775 1781 10.1001/jama.1997.03540460039030 9178790 

  2. 2. Petri M. Roubenoff R. Dallal G.E. Nadeau M.R. Selhub J. Rosenberg I.H. Plasma homocysteine as a risk factor for atherothrombotic events in systemic lupus erythematosus Lancet 1996 348 1120 1124 10.1016/S0140-6736(96)03032-2 8888164 

  3. 3. Ganguly P. Alam S.F. Role of homocysteine in the development of cardiovascular disease Nutr. J. 2015 14 6 10.1186/1475-2891-14-6 25577237 

  4. 4. Bautista L.E. Arenas I.A. Penuela A. Martinez L.X. Total plasma homocysteine level and risk of cardiovascular disease: A meta-analysis of prospective cohort studies J. Clin. Epidemiol. 2002 55 882 887 10.1016/S0895-4356(02)00434-1 12393075 

  5. 5. Seshadri S. Beiser A. Selhub J. Jacques P.F. Rosenberg I.H. D’Agostino R.B. Wilson P.W. Wolf P.A. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease N. Engl. J. Med. 2002 346 476 483 10.1056/NEJMoa011613 11844848 

  6. 6. Wu X. Zhang L. Miao Y. Yang J. Wang X. Wang C.C. Feng J. Wang L. Homocysteine causes vascular endothelial dysfunction by disrupting endoplasmic reticulum redox homeostasis Redox Biol. 2019 20 46 59 10.1016/j.redox.2018.09.021 30292945 

  7. 7. Meshkin B. Blum K. Folate nutrigenetics: A convergence of dietary folate metabolism, folic acid supplementation, and folate antagonist pharmacogenetics Drug Metab. Lett. 2007 1 55 60 10.2174/187231207779814319 19356019 

  8. 8. Hu J. Wang B. Sahyoun N.R. Application of the Key Events Dose-response Framework to Folate Metabolism Crit. Rev. Food Sci. Nutr. 2016 56 1325 1333 10.1080/10408398.2013.807221 25674817 

  9. 9. Obeid R. Herrmann W. The emerging role of unmetabolized folic acid in human diseases: Myth or reality? Curr. Drug Metab. 2012 13 1184 1195 10.2174/138920012802850137 22746304 

  10. 10. Koseki K. Maekawa Y. Bito T. Yabuta Y. Watanabe F. High-Dose folic acid supplementation results in significant accumulation of unmetabolized homocysteine, leading to severe oxidative stress in Caenorhabditis elegans Redox Biol. 2020 37 101724 10.1016/j.redox.2020.101724 32961438 

  11. 11. Moll S. Varga E.A. Homocysteine and MTHFR Mutations Circulation 2015 132 e6 e9 10.1161/CIRCULATIONAHA.114.013311 26149435 

  12. 12. McDowell I.F. Lang D. Homocysteine and endothelial dysfunction: A link with cardiovascular disease J. Nutr. 2000 130 369S 372S 10.1093/jn/130.2.369S 10721909 

  13. 13. Hultberg B. Andersson A. Isaksson A. Higher export rate of homocysteine in a human endothelial cell line than in other human cell lines Biochim. Biophys. Acta 1998 1448 61 69 10.1016/S0167-4889(98)00119-0 9824669 

  14. 14. Kim S.J. Kwon M.C. Ryu M.J. Chung H.K. Tadi S. Kim Y.K. Kim J.M. Lee S.H. Park J.H. Kweon G.R. CRIF1 is essential for the synthesis and insertion of oxidative phosphorylation polypeptides in the mammalian mitochondrial membrane Cell Metab. 2012 16 274 283 10.1016/j.cmet.2012.06.012 22819524 

  15. 15. Lee I. Kim S. Nagar H. Choi S.J. Jeon B.H. Piao S. Kim C.S. CR6-Interacting factor 1 deficiency reduces endothelial nitric oxide synthase activity by inhibiting biosynthesis of tetrahydrobiopterin Sci. Rep. 2020 10 842 10.1038/s41598-020-57673-9 31964986 

  16. 16. Cario H. Smith D.E. Blom H. Blau N. Bode H. Holzmann K. Pannicke U. Hopfner K.P. Rump E.M. Ayric Z. Dihydrofolate reductase deficiency due to a homozygous DHFR mutation causes megaloblastic anemia and cerebral folate deficiency leading to severe neurologic disease Am. J. Hum. Genet. 2011 88 226 231 10.1016/j.ajhg.2011.01.007 21310277 

  17. 17. Gellekink H. Blom H.J. van der Linden I.J. den Heijer M. Molecular genetic analysis of the human dihydrofolate reductase gene: Relation with plasma total homocysteine, serum and red blood cell folate levels Eur. J. Hum. Genet. 2007 15 103 109 10.1038/sj.ejhg.5201713 16969375 

  18. 18. Lu W. Li H. Zhang Y. Ang C.Y. Rapid method for the determination of total 5-methyltetrahydrofolate in blood by liquid chromatography with fluorescence detection J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002 766 331 337 10.1016/S0378-4347(01)00521-7 

  19. 19. Gao L. Chalupsky K. Stefani E. Cai H. Mechanistic insights into folic acid-dependent vascular protection: Dihydrofolate reductase (DHFR)-mediated reduction in oxidant stress in endothelial cells and angiotensin II-infused mice: A novel HPLC-based fluorescent assay for DHFR activity J. Mol. Cell. Cardiol. 2009 47 752 760 10.1016/j.yjmcc.2009.07.025 19660467 

  20. 20. Crabtree M.J. Hale A.B. Channon K.M. Dihydrofolate reductase protects endothelial nitric oxide synthase from uncoupling in tetrahydrobiopterin deficiency Free Radic. Biol. Med. 2011 50 1639 1646 10.1016/j.freeradbiomed.2011.03.010 21402147 

  21. 21. Obeid R. The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway Nutrients 2013 5 3481 3495 10.3390/nu5093481 24022817 

  22. 22. Jacques P.F. Selhub J. Bostom A.G. Wilson P.W. Rosenberg I.H. The effect of folic acid fortification on plasma folate and total homocysteine concentrations N. Engl. J. Med. 1999 340 1449 1454 10.1056/NEJM199905133401901 10320382 

  23. 23. Dhonukshe-Rutten R.A. de Vries J.H. de Bree A. van der Put N. van Staveren W.A. de Groot L.C. Dietary intake and status of folate and vitamin B12 and their association with homocysteine and cardiovascular disease in European populations Eur. J. Clin. Nutr. 2009 63 18 30 10.1038/sj.ejcn.1602897 17851461 

  24. 24. Quadri P. Fragiacomo C. Pezzati R. Zanda E. Forloni G. Tettamanti M. Lucca U. Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia Am. J. Clin. Nutr. 2004 80 114 122 10.1093/ajcn/80.1.114 15213037 

  25. 25. Ceruti S. Giammarioli A.M. Camurri A. Falzano L. Rufini S. Frank C. Fiorentini C. Malorni W. Abbracchio M.P. Adenosine- and 2-chloro-adenosine-induced cytopathic effects on myoblastic cells and myotubes: Involvement of different intracellular mechanisms Neuromuscul. Disord. 2000 10 436 446 10.1016/S0960-8966(00)00118-8 10899451 

  26. 26. Lee H.Y. Chae I.H. Kim H.S. Park Y.B. Choi Y.S. Lee Y.W. Park S.J. Cha Y.J. Differential effects of homocysteine on porcine endothelial and vascular smooth muscle cells J. Cardiovasc. Pharmacol. 2002 39 643 651 10.1097/00005344-200205000-00004 11973407 

  27. 27. Schroecksnadel K. Frick B. Wirleitner B. Winkler C. Schennach H. Fuchs D. Moderate hyperhomocysteinemia and immune activation Curr. Pharm. Biotechnol. 2004 5 107 118 10.2174/1389201043489657 14965213 

  28. 28. Van der Molen E.F. van den Heuvel L.P. te Poele Pothoff M.T. Monnens I.A. Eskes T.K. Blom H.J. The effect of folic acid on the homocysteine metabolism in human umbilical vein endothelial cells (HUVECs) Eur. J. Clin. Investig. 1996 26 304 309 10.1046/j.1365-2362.1996.137273.x 8732488 

  29. 29. Christensen B. Refsum H. Vintermyr O. Ueland P.M. Homocysteine export from cells cultured in the presence of physiological or superfluous levels of methionine: Methionine loading of non-transformed, transformed, proliferating, and quiescent cells in culture J. Cell. Physiol. 1991 146 52 62 10.1002/jcp.1041460108 1990019 

  30. 30. Sharma G.S. Bhattacharya R. Singh R. Protein Covalent Modification by Homocysteine: Consequences and Clinical Implications Protein Modificomics: From Modifications to Clinical Perspectives 1st ed. Dar T. Singh L. Elsevier Waltham, MA, USA 2019 281 311 

  31. 31. Jiang X. Yang F. Brailoiu E. Jakubowski H. Dun N.J. Schafer A.I. Yang X. Durante W. Wang H. Differential regulation of homocysteine transport in vascular endothelial and smooth muscle cells Arterioscler. Thromb. Vasc. Biol. 2007 27 1976 1983 10.1161/ATVBAHA.107.148544 17715404 

  32. 32. Selhub J. Homocysteine metabolism Annu. Rev. Nutr. 1999 19 217 246 10.1146/annurev.nutr.19.1.217 10448523 

  33. 33. Yi P. Melnyk S. Pogribna M. Pogribny I.P. Hine R.J. James S.J. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation J. Biol. Chem. 2000 275 29318 29323 10.1074/jbc.M002725200 10884384 

  34. 34. Chen N.C. Yang F. Capecci L.M. Gu Z. Schafer A.I. Durante W. Yang X.F. Wang H. Regulation of homocysteine metabolism and methylation in human and mouse tissues FASEB J. 2010 24 2804 2817 10.1096/fj.09-143651 20305127 

  35. 35. Joseph J. Loscalzo J. Methoxistasis: Integrating the roles of homocysteine and folic acid in cardiovascular pathobiology Nutrients 2013 5 3235 3256 10.3390/nu5083235 23955381 

  36. 36. Stam F. Smulders Y.M. van Guldener C. Jakobs C. Stehouwer C.D. de Meer K. Folic acid treatment increases homocysteine remethylation and methionine transmethylation in healthy subjects Clin. Sci. 2005 108 449 456 10.1042/CS20040295 15647003 

  37. 37. Zaric B.L. Obradovic M. Bajic V. Haidara M.A. Jovanovic M. Isenovic E.R. Homocysteine and Hyperhomocysteinaemia Curr. Med. Chem. 2019 26 2948 2961 10.2174/0929867325666180313105949 29532755 

  38. 38. Hannibal L. Blom H.J. Homocysteine and disease: Causal associations or epiphenomenons? Mol. Asp. Med. 2017 53 36 42 10.1016/j.mam.2016.11.003 27876556 

  39. 39. Nazki F.H. Sameer A.S. Ganaie B.A. Folate: Metabolism, genes, polymorphisms and the associated diseases Gene 2014 533 11 20 10.1016/j.gene.2013.09.063 24091066 

  40. 40. Wright A.J. Dainty J.R. Finglas P.M. Folic acid metabolism in human subjects revisited: Potential implications for proposed mandatory folic acid fortification in the UK Br. J. Nutr. 2007 98 667 675 10.1017/S0007114507777140 17617936 

  41. 41. Danese S. Sgambato A. Papa A. Scaldaferri F. Pola R. Sans M. Lovecchio M. Gasbarrini G. Cittadini A. Gasbarrini A. Homocysteine triggers mucosal microvascular activation in inflammatory bowel disease Am. J. Gastroenterol. 2005 100 886 895 10.1111/j.1572-0241.2005.41469.x 15784037 

  42. 42. Ma F. Wu T. Zhao J. Song A. Liu H. Xu W. Huang G. Folic acid supplementation improves cognitive function by reducing the levels of peripheral inflammatory cytokines in elderly Chinese subjects with MCI Sci. Rep. 2016 6 37486 10.1038/srep37486 27876835 

  43. 43. Asbaghi O. Ghanavati M. Ashtary-Larky D. Bagheri R. Rezaei Kelishadi M. Nazarian B. Nordvall M. Wong A. Dutheil F. Suzuki K. Effects of Folic Acid Supplementation on Oxidative Stress Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials Antioxidants 2021 10 871 10.3390/antiox10060871 34071500 

  44. 44. Bleie O. Semb A.G. Grundt H. Nordrehaug J.E. Vollset S.E. Ueland P.M. Nilsen D.W. Bakken A.M. Refsum H. Nygard O.K. Homocysteine-Lowering therapy does not affect inflammatory markers of atherosclerosis in patients with stable coronary artery disease J. Intern. Med. 2007 262 244 253 10.1111/j.1365-2796.2007.01810.x 17645592 

  45. 45. Nagar H. Jung S.B. Ryu M.J. Choi S.J. Piao S. Song H.J. Kang S.K. Shin N. Kim D.W. Jin S.A. CR6-Interacting Factor 1 Deficiency Impairs Vascular Function by Inhibiting the Sirt1-Endothelial Nitric Oxide Synthase Pathway Antioxid. Redox Signal. 2017 27 234 249 10.1089/ars.2016.6719 28117598 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로