$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Sequential convex programming approach for real-time guidance during the powered descent phase of mars landing missions

Advances in space research : the official journal of the Committee on Space Research (COSPAR), v.68 no.11, 2021년, pp.4398 - 4417  

Kwon, Dongyoung ,  Jung, Youyeun ,  Cheon, Yee-Jin ,  Bang, Hyochoong

초록이 없습니다.

참고문헌 (44)

  1. 10.1109/ACC.2010.5530931 Açikmese, B., Blackmore, L., 2010. Lossless convexification of a class of non-convex optimal control problems for linear systems. In: Proceedings of the 2010 American Control Conference, Baltimore, MD, USA. doi: 10.1109/ACC.2010.5530931. 

  2. Automatica Açikmese 47 2 341 2011 10.1016/j.automatica.2010.10.037 Lossless convexification of a class of optimal control problems with non-convex control constraints 

  3. 10.2514/6.2008-6426 Açikmese, B., Blackmore, L., Scharf, D.P., Wolf, A., 2008. Enhancements on the convex programming based powered descent guidance algorithm for Mars landing. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, HI, USA. AIAA Paper 2008-6426. doi: 10.2514/6.2008-6426. 

  4. J. Guidance Control Dyn. Açikmese 30 5 1353 2007 10.2514/1.27553 Convex programming approach to powered descent guidance for Mars landing 

  5. J. Guidance Control Dyn. Blackmore 33 1161 2010 10.2514/1.47202 Minimum-landing-error powered-descent guidance for Mars landing using convex optimization 

  6. J. Spacecraft Roc. Braun 44 2 310 2007 10.2514/1.25116 Mars exploration entry, descent and landing challenges 

  7. Braun, R.D., Powell, R.W., Cheatwood, F.M.N., et al., 1998. The Mars Surveyor 2001 lander: A first step toward precision landing. In: 49th International Astronautical Congress, Melbourne, AU. Paper IAF 98-Q.3.03. 

  8. 10.23919/ECC.2013.6669541 Domahidi, A., Chu, E., Boyd, S., 2013. ECOS: An SOCP solver for embedded systems. In: 2013 European Control Conference, Zurich, Switzerland. pp. 3071-3076. doi: 10.23919/ECC.2013.6669541. 

  9. J. Guidance Control Dyn. Dueri 40 2 197 2017 10.2514/1.G001480 Customized real-time interior-point methods for onboard powered-descent guidance 

  10. 10.2514/6.2016-5271 Foust, R.C., Chung, S.J., Hadaegh, F.Y., 2016a. Autonomous in-orbit satellite assembly from a modular heterogeneous swarm using sequential convex programming. In: AIAA/AAS Astrodynamics Specialist Conference, Long Beach, CA, USA. AIAA Paper 2016-5271. doi: 10.2514/6.2016-5271. 

  11. 10.2514/6.2016-5271 Foust, R.C., Chung, S.J., Hadaegh, F.Y., 2016b. Real-time optimal control and target assignment for autonomous in-orbit satellite assembly from a modular heterogeneous swarm. In: 26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA, USA. 

  12. Space Sci. Rev. Golombek 211 5 2017 10.1007/s11214-016-0321-9 Selection of the InSight landing site 

  13. GR-CPCI-GR740-UM, 2019. GR-CPCI-GR740 Development Board 2019 User’s Manual (ver. 2.3). 

  14. GR740-UM-DS, 2020. GR740 Quad Core LEON4 SPARC V8 Processor 2020 Data Sheet and User’s Manual (vser. 2.4). 

  15. Grant, M., Boyd, S., 2020. CVX: MATLAB Software for Disciplined Convex Programming (ver. 2.2). URL: http://cvxr.com/cvx. [retrieved 27 Oct. 2020]. 

  16. Guo, Y., Hawkins, M., Wie, B., 2011. Optimal feedback guidance algorithms for planetary landing and asteroid intercept. In: AAS/AIAA Astrodynamics Specialist Conference, Girdwood, AK, USA. AAS Paper 11-588. 

  17. J. Guidance Control Dyn. Guo 36 3 799 2013 10.2514/1.58098 Waypoint-optimized zero-effort miss/zero-effort-velocity feedback guidance for Mars landing 

  18. Hijorth, M., Aberg, M., Wessman, N.J., et al., 2016. GR740: Rad-hard quad-core LEON4FT system-on-chip. In: Eurospace DAta Systems in Aerospace, Tallinn, Estonia. 

  19. Proc. Inst. Mech. Eng., Part G: J. Aerospace Eng. Jung 230 11 2048 2015 10.1177/0954410015607893 Mars precision landing guidance based on model predictive control approach 

  20. J. Guidance Control Dyn. Liu 39 2 227 2016 10.2514/1.G001210 Entry trajectory optimization by second-order cone programming 

  21. Mao, Y., Szmuk, M., Xu, X., Açikmese, B., 2018. Successive convexification: A superlinearly convergent algorithm for non-convex optimal control problems arXiv preprint arXiv:1804.06539. 

  22. J. Guidance Control Dyn. Morgan 37 6 1725 2014 10.2514/1.G000218 Model predictive control of swarms of spacecraft using sequential convex programming 

  23. Int. J. Robot. Res. Morgan 35 1261 2016 10.1177/0278364916632065 Swarm assignment and trajectory optimization using variable-swarm, distributed auction assignment and sequential convex programming 

  24. 10.1137/1.9781611970791 Nesterov, Y., Nemirovsky, A., 1994. Interior-Point Polynomial Methods in Convex Programming. Soc. Ind. Appl. Math., 6. doi: 10.1137/1.9781611970791 (chapter 3). 

  25. ACM Trans. Mathe. Software (TOMS) Patterson 41 1 1 2014 10.1145/2558904 GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive gaussian quadrature collocation methods and sparse nonlinear programming 

  26. Rush, B., Bhaskaran, S., Synnott, S.P., 2001. Improving Mars approach navigation using optical data. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, San Diego, CA, USA. pp. 1651-1660. 

  27. J. Guidance Control Dyn. Scharf 40 2 213 2017 10.2514/1.G000399 Implementation and experimental demonstration of onboard powered-descent guidance 

  28. 10.2514/6.2015-0850 Scharf, D.P., Ploen, S.R., Açikmese, B., 2015. Interpolation-enhanced powered descent guidance for onboard nominal, off-nominal, and multi-x scenarios, in: AIAA Guidance, Navigation, and Control Conference, Kissimmee, FL, USA. AIAA Paper 2015-0850. doi: 10.2514/6.2015-0850. 

  29. 10.1109/AERO.2014.6836462 Scharf, D.P., Regehr, M.W., Vaughan, G.M., et al., 2014. ADAPT demonstrations of onboard large-divert guidance with a VTVL rocket. In: IEEE Aerospace Conference, Big Sky, MT, USA. Paper 6836462. doi: 10.1109/AERO.2014.6836462. 

  30. 10.2514/6.2018-0617 Szmuk, M., Açikmese, B., 2018. Successive convexification for 6-DoF Mars rocket powered landing with free-final-time. In: AIAA Guidance, Navigation, and Control Conference, Kissimmee, FL, USA. AIAA Paper 2018-0617. doi: 10.2514/6.2018-0617. 

  31. 10.2514/6.2016-0378 Szmuk, M., Açikmese, B., Berning, A.W., 2016. Successive convexification for fuel-optimal powered landing with aerodynamic drag and non-convex constraints. In: AIAA Guidance, Navigation, and Control Conference, San Diego, CA, USA. AIAA Paper 2016-0378. doi: 10.2514/6.2016-0378. 

  32. 10.2514/6.2017-1500 Szmuk, M., Eren, U., Açikmese, B., 2017. Successive convexification for Mars 6-DoF powered descent landing guidance. In: AIAA Guidance, Navigation, and Control Conference, Grapevine, TX, USA. AIAA Paper 2017-1500. doi: 10.2514/6.2017-1500. 

  33. 10.2514/6.2019-0926 Szmuk, M., Reynolds, T., Açikmese, B., et al., 2019. Successive convexification for 6-DoF powered descent guidance with compound state-triggered constraints. In: AIAA Scitech 2019 Forum, San Diego, CA, USA. AIAA Paper 2019-0926. doi: 10.2514/6.2019-0926. 

  34. Optim. Methods Softw. Toh 11 1-4 545 1999 10.1080/10556789908805762 SDPT3: A MATLAB software package for semidefinite programming 

  35. 10.2514/6.2015-4418 Trawny, N., Benito, J., Tweddle, B.E., et al., 2015. Flight testing of terrain-relative navigation and large-divert guidance on a VTVL rocket. In: AIAA Space Forum, Pasadena, CA, USA. AIAA Paper 2015-4418. doi: 10.2514/6.2015-4418. 

  36. J. Guidance Control Dyn. Wang 40 10 2603 2017 10.2514/1.G002150 Constrained trajectory optimization for planetary entry via sequential convex programming 

  37. J. Spacecraft Rock. Wang 55 4 993 2018 10.2514/1.A34102 Autonomous entry guidance for hypersonic vehicles by convex optimization 

  38. 10.2514/6.2018-0013 Wang, Z., Grant, M.J., 2018b. Near-optimal entry guidance for reference trajectory tracking via convex optimization. In: 2018 AIAA Atmospheric Flight Mechanics Conference, Kissimmee, FL, USA. AIAA Paper 2018-0013. doi: 10.2514/6.2018-0013. 

  39. 10.2514/6.2019-0667 Wang, Z., Grant, M.J., 2019. Improved sequential convex programming algorithms for entry trajectory optimization. In: AIAA Scitech 2019 Forum, San Diego, CA, USA. AIAA Paper 2019-0667. doi: 10.2514/1.A34640. 

  40. Adv. Astronaut. Sci. Wells 125 325 2006 Entry, descent and landing challenges of human Mars exploration 

  41. 10.1109/AERO.2006.1655793 Wolf, A.A., Tooley, J., Ploen, S., et al., 2006. Performance trades for Mars pinpoint landing. In: IEEE Aerospace Conference, Big Sky, MT, USA. Paper 1661. doi: 10.1109/AERO.2006.1655793. 

  42. 10.1137/1.9781611971453 Wright, S.J., 1997. Primal-Dual Interior-Point Methods. Soc. Ind. Appl. Math. doi: 10.1137/1.9781611971453 (chapter 1, 2). 

  43. Aerosp. Sci. Technol. Zheng 45 359 2015 10.1016/j.ast.2015.06.008 Optimal nonlinear feedback guidance algorithm for Mars powered descent 

  44. Adv. Space Res. Zhou 54 11 2446 2014 10.1016/j.asr.2014.08.011 Improved ZEM/ZEV feedback guidance for mars powered descent phase 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로