최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Flexible services and manufacturing journal, v.33 no.4, 2021년, pp.1090 - 1115
Lee, Hyunjin , Lee, Taesik
초록이 없습니다.
Prod Oper Manag R Alanis 22 1 216 2013 10.1111/j.1937-5956.2012.01362.x Alanis R, Ingolfsson A, Kolfal B (2013) A Markov chain model for an EMS system with repositioning. Prod Oper Manag 22(1):216-231
J Oper Res Soc JR Baker 37 11 1047 1986 10.1057/jors.1986.182 Baker JR, Fitzpatrick KE (1986) Determination of an optimal forecast model for ambulance demand using goal programming. J Oper Res Soc 37(11):1047-1059
Eur J Oper Res V Bélanger 272 1 1 2019 10.1016/j.ejor.2018.02.055 Bélanger V, Ruiz A, Soriano P (2019) Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles. Eur J Oper Res 272(1):1-23
CM Bishop 2006 Pattern recognition and machine learning Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin
Eur J Oper Res L Brotcorne 147 3 451 2003 10.1016/S0377-2217(02)00364-8 Brotcorne L, Laporte G, Semet F (2003) Ambulance location and relocation models. Eur J Oper Res 147(3):451-463
Oper Res S Budge 57 1 251 2009 10.1287/opre.1080.0591 Budge S, Ingolfsson A, Erkut E (2009) Approximating vehicle dispatch probabilities for emergency service systems with location-specific service times and multiple units per location. Oper Res 57(1):251-255
Health Care Manag Sci N Channouf 10 1 25 2007 10.1007/s10729-006-9006-3 Channouf N, LEcuyer P, Ingolfsson A, Avramidis AN (2007) The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta. Health Care Manag Sci 10(1):25-45
IEEE J Biomed Health Inf AY Chen 20 4 1178 2016 10.1109/JBHI.2015.2443799 Chen AY, Lu T-Y, Ma MH-M, Sun W-Z (2016) Demand forecast using data analytics for the pre-allocation of ambulances. IEEE J Biomed Health Inf 20(4):1178-1187
Stat Med MD Finkelman 30 9 1028 2011 10.1002/sim.4217 Finkelman MD, Green JG, Gruber MJ, Zaslavsky AM (2011) A zero-and k-inflated mixture model for health questionnaire data. Stat Med 30(9):1028-1043
Fritsch Stefan, Guenther Frauke (2016) Package neuralnet. The Comprehensive R Archive Network
Eur J Oper Res O Fujiwara 31 1 9 1987 10.1016/0377-2217(87)90130-5 Fujiwara O, Makjamroen T, Gupta KK (1987) Ambulance deployment analysis: a case study of Bangkok. Eur J Oper Res 31(1):9-18
Stat Probabl Lett E Furman 77 2 169 2007 10.1016/j.spl.2006.06.007 Furman E (2007) On the convolution of the negative binomial random variables. Stat Probabl Lett 77(2):169-172
J Oper Res Soc M Gendreau 57 1 22 2006 10.1057/palgrave.jors.2601991 Gendreau M, Laporte G, Semet F (2006) The maximal expected coverage relocation problem for emergency vehicles. J Oper Res Soc 57(1):22-28
Eur J Oper Res J Goldberg 49 3 308 1990 10.1016/0377-2217(90)90402-W Goldberg J, Dietrich R, Chen JM, Mitwasi MG, Valenzuela T, Criss E (1990) Validating and applying a model for locating emergency medical vehicles in Tuczon, AZ. Eur J Oper Res 49(3):308-324
EMS Manag J JB Goldberg 1 1 20 2004 Goldberg JB (2004) Operations research models for the deployment of emergency services vehicles. EMS Manag J 1(1):20-39
Manage Sci JP Jarvis 31 2 235 1985 10.1287/mnsc.31.2.235 Jarvis JP (1985) Approximating the equilibrium behavior of multi-server loss systems. Manage Sci 31(2):235-239
Jin LH, Taesik L (2016) Comparison of spatio-temporal emergency medical demand forecasting model for emergency medical system operation planning. In: Proceedings of the Korea Institute of Industrial Engineers fall conference, pp. 1864-1882
Oper Res RD Kamenetzky 30 6 1148 1982 10.1287/opre.30.6.1148 Kamenetzky RD, Shuman LJ, Wolfe H (1982) Estimating need and demand for prehospital care. Oper Res 30(6):1148-1167
PLoS ONE H-W Kang 12 4 e0176244 2017 10.1371/journal.pone.0176244 Kang H-W, Kang H-B (2017) Prediction of crime occurrence from multi-modal data using deep learning. PLoS ONE 12(4):e0176244
Comput Oper Res RC Larson 1 1 67 1974 10.1016/0305-0548(74)90076-8 Larson RC (1974) A hypercube queuing model for facility location and redistricting in urban emergency services. Comput Oper Res 1(1):67-95
Oper Res RC Larson 23 5 845 1975 10.1287/opre.23.5.845 Larson RC (1975) Approximating the performance of urban emergency service systems. Oper Res 23(5):845-868
Ann Appl Stati DS Matteson 5 2B 1379 2011 Matteson DS, McLean MW, Woodard DB, Henderson SG et al (2011) Forecasting emergency medical service call arrival rates. Ann Appl Stati 5(2B):1379-1406
Acad Emerg Med ML McCarthy 15 4 337 2008 10.1111/j.1553-2712.2008.00083.x McCarthy ML, Zeger SL, Ding R, Aronsky D, Hoot NR, Kelen GD (2008) The challenge of predicting demand for emergency department services. Acad Emerg Med 15(4):337-346
Asia-Pacific J Risk Insur ATP Najafabadi 2017 10.1515/apjri-2017-0014 Najafabadi ATP, MohammadPour S (2017) A k-inflated negative binomial mixture regression model: application to rate-making systems. Asia-Pacific J Risk Insur 12(2). https://doi.org/10.1515/apjri-2017-0014
Trans GIS T Nakaya 14 3 223 2010 10.1111/j.1467-9671.2010.01194.x Nakaya T, Yano K (2010) Visualising crime clusters in a space-time cube: an exploratory data-analysis approach using space-time kernel density estimation and scan statistics. Trans GIS 14(3):223-239
Comput Oper Res J Naoum-Sawaya 40 8 1972 2013 10.1016/j.cor.2013.02.006 Naoum-Sawaya J, Elhedhli S (2013) A stochastic optimization model for real-time ambulance redeployment. Comput Oper Res 40(8):1972-1978
Transp Sci F Papier 42 3 302 2008 10.1287/trsc.1070.0225 Papier F, Thonemann UW (2008) Queuing models for sizing and structuring rental fleets. Transp Sci 42(3):302-317
Am J Emerg Med K Peleg 22 3 164 2004 10.1016/j.ajem.2004.02.003 Peleg K, Pliskin JS (2004) A geographic information system simulation model of ems: reducing ambulance response time. Am J Emerg Med 22(3):164-170
J Am Stat Assoc P Puig 101 473 332 2006 10.1198/016214505000000718 Puig P, Valero J (2006) Count data distributions: some characterizations with applications. J Am Stat Assoc 101(473):332-340
Eur J Oper Res JF Repede 75 3 567 1994 10.1016/0377-2217(94)90297-6 Repede JF, Bernardo JJ (1994) Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky. Eur J Oper Res 75(3):567-581
Appl Math Comput JM Sarabia 218 19 9992 2012 Sarabia JM, Prieto F, Trueba C (2012) The n-fold convolution of a finite mixture of densities. Appl Math Comput 218(19):9992-9996
Eur J Oper Res V Schmid 219 3 611 2012 10.1016/j.ejor.2011.10.043 Schmid V (2012) Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming. Eur J Oper Res 219(3):611-621
Comput Oper Res H Setzler 36 6 1843 2009 10.1016/j.cor.2008.05.010 Setzler H, Saydam C, Park S (2009) Ems call volume predictions: a comparative study. Comput Oper Res 36(6):1843-1851
Flex Serv Manuf J I Sung 30 1-2 153 2018 10.1007/s10696-016-9271-5 Sung I, Lee T (2018) Scenario-based approach for the ambulance location problem with stochastic call arrivals under a dispatching policy. Flex Serv Manuf J 30(1-2):153-170
Bayesian Anal MA Taddy 7 2 335 2012 10.1214/12-BA711 Taddy MA, Kottas A et al (2012) Mixture modeling for marked Poisson processes. Bayesian Anal 7(2):335-362
J Oper Res Soc JL Vile 63 11 1556 2012 10.1057/jors.2011.160 Vile JL, Gillard JW, Harper PR, Knight VA (2012) Predicting ambulance demand using singular spectrum analysis. J Oper Res Soc 63(11):1556-1565
J Adv Manag Sci LSS Wei 4 3 187 2016 Wei LSS, Sian NY, Rajagopal LM, Yng NY, Hock OME (2016) Ambulance deployment under demand uncertainty. J Adv Manag Sci 4(3):187-194
Manage Sci PR Winters 6 3 324 1960 10.1287/mnsc.6.3.324 Winters PR (1960) Forecasting sales by exponentially weighted moving averages. Manage Sci 6(3):324-342
SIAM review P Wolfe 13 2 185 1971 10.1137/1013035 Wolfe P (1971) Convergence conditions for ascent methods. ii: Some corrections. SIAM review 13(2):185-188
J Am Stat Assoc Z Zhou 110 509 6 2015 10.1080/01621459.2014.941466 Zhou Z, Matteson DS, Woodard DB, Henderson SG, Micheas AC (2015) A spatio-temporal point process model for ambulance demand. J Am Stat Assoc 110(509):6-15
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.