$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Demand modelling for emergency medical service system with multiple casualties cases: k-inflated mixture regression model

Flexible services and manufacturing journal, v.33 no.4, 2021년, pp.1090 - 1115  

Lee, Hyunjin ,  Lee, Taesik

초록이 없습니다.

참고문헌 (43)

  1. Prod Oper Manag R Alanis 22 1 216 2013 10.1111/j.1937-5956.2012.01362.x Alanis R, Ingolfsson A, Kolfal B (2013) A Markov chain model for an EMS system with repositioning. Prod Oper Manag 22(1):216-231 

  2. 10.1109/ICACCI.2015.7275858 Azeez Jazeem, Aravindhar D John (2015) Hybrid approach to crime prediction using deep learning. In: 2015 International conference on advances in computing, communications and informatics (ICACCI), pp. 1701-1710. IEEE 

  3. J Oper Res Soc JR Baker 37 11 1047 1986 10.1057/jors.1986.182 Baker JR, Fitzpatrick KE (1986) Determination of an optimal forecast model for ambulance demand using goal programming. J Oper Res Soc 37(11):1047-1059 

  4. Eur J Oper Res V Bélanger 272 1 1 2019 10.1016/j.ejor.2018.02.055 Bélanger V, Ruiz A, Soriano P (2019) Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles. Eur J Oper Res 272(1):1-23 

  5. CM Bishop 2006 Pattern recognition and machine learning Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin 

  6. Eur J Oper Res L Brotcorne 147 3 451 2003 10.1016/S0377-2217(02)00364-8 Brotcorne L, Laporte G, Semet F (2003) Ambulance location and relocation models. Eur J Oper Res 147(3):451-463 

  7. Oper Res S Budge 57 1 251 2009 10.1287/opre.1080.0591 Budge S, Ingolfsson A, Erkut E (2009) Approximating vehicle dispatch probabilities for emergency service systems with location-specific service times and multiple units per location. Oper Res 57(1):251-255 

  8. Health Care Manag Sci N Channouf 10 1 25 2007 10.1007/s10729-006-9006-3 Channouf N, LEcuyer P, Ingolfsson A, Avramidis AN (2007) The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta. Health Care Manag Sci 10(1):25-45 

  9. IEEE J Biomed Health Inf AY Chen 20 4 1178 2016 10.1109/JBHI.2015.2443799 Chen AY, Lu T-Y, Ma MH-M, Sun W-Z (2016) Demand forecast using data analytics for the pre-allocation of ambulances. IEEE J Biomed Health Inf 20(4):1178-1187 

  10. Stat Med MD Finkelman 30 9 1028 2011 10.1002/sim.4217 Finkelman MD, Green JG, Gruber MJ, Zaslavsky AM (2011) A zero-and k-inflated mixture model for health questionnaire data. Stat Med 30(9):1028-1043 

  11. Stat Optim Inf Comput AV Freitas 1 1 8 2013 10.19139/6 Freitas AV, Afreixo V, Cruz SE (2013) Mixture models of geometric distributions in genomic analysis of inter-nucleotide distances. Stat Optim Inf Comput 1(1):8-28 

  12. Fritsch Stefan, Guenther Frauke (2016) Package neuralnet. The Comprehensive R Archive Network 

  13. Eur J Oper Res O Fujiwara 31 1 9 1987 10.1016/0377-2217(87)90130-5 Fujiwara O, Makjamroen T, Gupta KK (1987) Ambulance deployment analysis: a case study of Bangkok. Eur J Oper Res 31(1):9-18 

  14. Stat Probabl Lett E Furman 77 2 169 2007 10.1016/j.spl.2006.06.007 Furman E (2007) On the convolution of the negative binomial random variables. Stat Probabl Lett 77(2):169-172 

  15. J Oper Res Soc M Gendreau 57 1 22 2006 10.1057/palgrave.jors.2601991 Gendreau M, Laporte G, Semet F (2006) The maximal expected coverage relocation problem for emergency vehicles. J Oper Res Soc 57(1):22-28 

  16. Eur J Oper Res J Goldberg 49 3 308 1990 10.1016/0377-2217(90)90402-W Goldberg J, Dietrich R, Chen JM, Mitwasi MG, Valenzuela T, Criss E (1990) Validating and applying a model for locating emergency medical vehicles in Tuczon, AZ. Eur J Oper Res 49(3):308-324 

  17. EMS Manag J JB Goldberg 1 1 20 2004 Goldberg JB (2004) Operations research models for the deployment of emergency services vehicles. EMS Manag J 1(1):20-39 

  18. Manage Sci JP Jarvis 31 2 235 1985 10.1287/mnsc.31.2.235 Jarvis JP (1985) Approximating the equilibrium behavior of multi-server loss systems. Manage Sci 31(2):235-239 

  19. Jin LH, Taesik L (2016) Comparison of spatio-temporal emergency medical demand forecasting model for emergency medical system operation planning. In: Proceedings of the Korea Institute of Industrial Engineers fall conference, pp. 1864-1882 

  20. Oper Res RD Kamenetzky 30 6 1148 1982 10.1287/opre.30.6.1148 Kamenetzky RD, Shuman LJ, Wolfe H (1982) Estimating need and demand for prehospital care. Oper Res 30(6):1148-1167 

  21. PLoS ONE H-W Kang 12 4 e0176244 2017 10.1371/journal.pone.0176244 Kang H-W, Kang H-B (2017) Prediction of crime occurrence from multi-modal data using deep learning. PLoS ONE 12(4):e0176244 

  22. Comput Oper Res RC Larson 1 1 67 1974 10.1016/0305-0548(74)90076-8 Larson RC (1974) A hypercube queuing model for facility location and redistricting in urban emergency services. Comput Oper Res 1(1):67-95 

  23. Oper Res RC Larson 23 5 845 1975 10.1287/opre.23.5.845 Larson RC (1975) Approximating the performance of urban emergency service systems. Oper Res 23(5):845-868 

  24. Ann Appl Stati DS Matteson 5 2B 1379 2011 Matteson DS, McLean MW, Woodard DB, Henderson SG et al (2011) Forecasting emergency medical service call arrival rates. Ann Appl Stati 5(2B):1379-1406 

  25. Acad Emerg Med ML McCarthy 15 4 337 2008 10.1111/j.1553-2712.2008.00083.x McCarthy ML, Zeger SL, Ding R, Aronsky D, Hoot NR, Kelen GD (2008) The challenge of predicting demand for emergency department services. Acad Emerg Med 15(4):337-346 

  26. Asia-Pacific J Risk Insur ATP Najafabadi 2017 10.1515/apjri-2017-0014 Najafabadi ATP, MohammadPour S (2017) A k-inflated negative binomial mixture regression model: application to rate-making systems. Asia-Pacific J Risk Insur 12(2). https://doi.org/10.1515/apjri-2017-0014 

  27. Trans GIS T Nakaya 14 3 223 2010 10.1111/j.1467-9671.2010.01194.x Nakaya T, Yano K (2010) Visualising crime clusters in a space-time cube: an exploratory data-analysis approach using space-time kernel density estimation and scan statistics. Trans GIS 14(3):223-239 

  28. Comput Oper Res J Naoum-Sawaya 40 8 1972 2013 10.1016/j.cor.2013.02.006 Naoum-Sawaya J, Elhedhli S (2013) A stochastic optimization model for real-time ambulance redeployment. Comput Oper Res 40(8):1972-1978 

  29. Transp Sci F Papier 42 3 302 2008 10.1287/trsc.1070.0225 Papier F, Thonemann UW (2008) Queuing models for sizing and structuring rental fleets. Transp Sci 42(3):302-317 

  30. Am J Emerg Med K Peleg 22 3 164 2004 10.1016/j.ajem.2004.02.003 Peleg K, Pliskin JS (2004) A geographic information system simulation model of ems: reducing ambulance response time. Am J Emerg Med 22(3):164-170 

  31. J Am Stat Assoc P Puig 101 473 332 2006 10.1198/016214505000000718 Puig P, Valero J (2006) Count data distributions: some characterizations with applications. J Am Stat Assoc 101(473):332-340 

  32. Eur J Oper Res JF Repede 75 3 567 1994 10.1016/0377-2217(94)90297-6 Repede JF, Bernardo JJ (1994) Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky. Eur J Oper Res 75(3):567-581 

  33. Appl Math Comput JM Sarabia 218 19 9992 2012 Sarabia JM, Prieto F, Trueba C (2012) The n-fold convolution of a finite mixture of densities. Appl Math Comput 218(19):9992-9996 

  34. Eur J Oper Res V Schmid 219 3 611 2012 10.1016/j.ejor.2011.10.043 Schmid V (2012) Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming. Eur J Oper Res 219(3):611-621 

  35. Comput Oper Res H Setzler 36 6 1843 2009 10.1016/j.cor.2008.05.010 Setzler H, Saydam C, Park S (2009) Ems call volume predictions: a comparative study. Comput Oper Res 36(6):1843-1851 

  36. Flex Serv Manuf J I Sung 30 1-2 153 2018 10.1007/s10696-016-9271-5 Sung I, Lee T (2018) Scenario-based approach for the ambulance location problem with stochastic call arrivals under a dispatching policy. Flex Serv Manuf J 30(1-2):153-170 

  37. Bayesian Anal MA Taddy 7 2 335 2012 10.1214/12-BA711 Taddy MA, Kottas A et al (2012) Mixture modeling for marked Poisson processes. Bayesian Anal 7(2):335-362 

  38. J Oper Res Soc JL Vile 63 11 1556 2012 10.1057/jors.2011.160 Vile JL, Gillard JW, Harper PR, Knight VA (2012) Predicting ambulance demand using singular spectrum analysis. J Oper Res Soc 63(11):1556-1565 

  39. J Adv Manag Sci LSS Wei 4 3 187 2016 Wei LSS, Sian NY, Rajagopal LM, Yng NY, Hock OME (2016) Ambulance deployment under demand uncertainty. J Adv Manag Sci 4(3):187-194 

  40. Manage Sci PR Winters 6 3 324 1960 10.1287/mnsc.6.3.324 Winters PR (1960) Forecasting sales by exponentially weighted moving averages. Manage Sci 6(3):324-342 

  41. SIAM review P Wolfe 13 2 185 1971 10.1137/1013035 Wolfe P (1971) Convergence conditions for ascent methods. ii: Some corrections. SIAM review 13(2):185-188 

  42. 10.1002/9781118919408.ch14 Zhou Zhengyi, Matteson David S (2016) Temporal and spatio-temporal models for ambulance demand. Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, pp. 389-412 

  43. J Am Stat Assoc Z Zhou 110 509 6 2015 10.1080/01621459.2014.941466 Zhou Z, Matteson DS, Woodard DB, Henderson SG, Micheas AC (2015) A spatio-temporal point process model for ambulance demand. J Am Stat Assoc 110(509):6-15 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로