$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Solid-State Nanopore for Molecular Detection

International journal of precision engineering and manufacturing, v.22 no.12, 2021년, pp.2001 - 2026  

Haq, Muhammad Refatul ,  Lee, Bong Jae ,  Lee, Jungchul

초록이 없습니다.

참고문헌 (208)

  1. Electrophoresis Y Chen 22 2 187 2001 10.1002/1522-2683(200101)22:2<187::AID-ELPS187>3.0.CO;2-0 Chen, Y., & Pepin, A. (2001). Nanofabrication: Conventional and nonconventional methods. Electrophoresis, 22(2), 187-207. 

  2. ACS Applied Materials and Interfaces L Zhu 10 31 26555 2018 10.1021/acsami.8b09505 Zhu, L., Xu, Y., Ali, I., Liu, L., Wu, H., Lu, Z., & Liu, Q. (2018). Solid-state nanopore single-molecule sensing of DNAzyme cleavage reaction assisted with nucleic acid nanostructure. ACS Applied Materials and Interfaces, 10(31), 26555-26565. 

  3. Journal of Membrane Science G Dong 520 860 2016 10.1016/j.memsci.2016.08.059 Dong, G., Hou, J., Wang, J., Zhang, Y., Chen, V., & Liu, J. (2016). Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. Journal of Membrane Science, 520, 860-868. 

  4. ACS Nano M Caglar 14 3 2729 2019 10.1021/acsnano.9b08168 Caglar, M., Silkina, I., Brown, B. T., Thorneywork, A. L., Burton, O. J., Babenko, V., Gilbert, S. M., Zettl, A., Hofmann, S., & Keyser, U. F. (2019). Tunable anion-selective transport through monolayer graphene and hexagonal boron nitride. ACS Nano, 14(3), 2729-2738. 

  5. ACS ES&T Water Y Liu 1 1 34 2020 10.1021/acsestwater.0c00015 Liu, Y., Zhang, Z., & Wang, S. (2020). Carbon nanopore-tailored reverse osmotic water desalination. ACS ES&T Water, 1(1), 34-47. 

  6. Advanced Functional Materials L Cao 28 39 1804189 2018 10.1002/adfm.201804189 Cao, L., Wen, Q., Feng, Y., Ji, D., Li, H., Li, N., Jiang, L., & Guo, W. (2018). On the origin of ion selectivity in ultrathin nanopores: Insights for membrane-scale osmotic energy conversion. Advanced Functional Materials, 28(39), 1804189. 

  7. Nature J Feng 536 7615 197 2016 10.1038/nature18593 Feng, J., Graf, M., Liu, K., Ovchinnikov, D., Dumcenco, D., Heiranian, M., Nandigana, V., Aluru, N. R., Kis, A., & Radenovic, A. (2016). Single-layer MoS2 nanopores as nanopower generators. Nature, 536(7615), 197-200. 

  8. Current Opinion in Electrochemistry Y Lin 7 172 2018 10.1016/j.coelec.2017.12.002 Lin, Y., Ying, Y. L., & Long, Y. T. (2018). Nanopore confinement for electrochemical sensing at the single-molecule level. Current Opinion in Electrochemistry, 7, 172-178. 

  9. Nature nanotechnology M Wanunu 5 11 807 2010 10.1038/nnano.2010.202 Wanunu, M., Dadosh, T., Ray, V., Jin, J., McReynolds, L., & Drndić, M. (2010). Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nature nanotechnology, 5(11), 807-814. 

  10. Biophysical Journal M Akeson 77 6 3227 1999 10.1016/S0006-3495(99)77153-5 Akeson, M., Branton, D., Kasianowicz, J. J., Brandin, E., & Deamer, D. W. (1999). Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophysical Journal, 77(6), 3227-3233. 

  11. Scientific Reports MH Lee 4 1 1 2014 10.1038/srep07448 Lee, M. H., Kumar, A., Park, K. B., Cho, S. Y., Kim, H. M., Lim, M. C., Kim, Y. R., & Kim, K. B. (2014). A low-noise solid-state nanopore platform based on a highly insulating substrate. Scientific Reports, 4(1), 1-7. 

  12. ChemistrySelect D Yilmaz 6 1 59 2021 10.1002/slct.202004425 Yilmaz, D., Kaya, D., Kececi, K., & Dinler, A. (2021). Role of nanopore geometry in particle resolution by resistive-pulse sensing. ChemistrySelect, 6(1), 59-67. 

  13. Nano Letters AP Ivanov 11 1 279 2011 10.1021/nl103873a Ivanov, A. P., Instuli, E., McGilvery, C. M., Baldwin, G., McComb, D. W., Albrecht, T., & Edel, J. B. (2011). DNA tunneling detector embedded in a nanopore. Nano Letters, 11(1), 279-285. 

  14. The Analyst T Gilboa 140 14 4733 2015 10.1039/C4AN02388A Gilboa, T., & Meller, A. (2015). Optical sensing and analyte manipulation in solid-state nanopores. The Analyst, 140(14), 4733-4747. 

  15. Nature PJ Crosland-Taylor 171 4340 37 1953 10.1038/171037b0 Crosland-Taylor, P. J. (1953). A device for counting small particles suspended in a fluid through a tube. Nature, 171(4340), 37-38. 

  16. Physics Today M Muthukumar 68 8 40 2015 10.1063/PT.3.2881 Muthukumar, M., Plesa, C., & Dekker, C. (2015). Single-molecule sensing with nanopores. Physics Today, 68(8), 40. 

  17. Proceedings of the National Academy of Sciences JJ Kasianowicz 93 24 13770 1996 10.1073/pnas.93.24.13770 Kasianowicz, J. J., Brandin, E., Branton, D., & Deamer, D. W. (1996). Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences, 93(24), 13770-13773. 

  18. Science M Faller 303 5661 1189 2004 10.1126/science.1094114 Faller, M., Niederweis, M., & Schulz, G. E. (2004). The structure of a mycobacterial outer-membrane channel. Science, 303(5661), 1189-1192. 

  19. TRENDS in Biotechnology M Rhee 25 4 174 2007 10.1016/j.tibtech.2007.02.008 Rhee, M., & Burns, M. A. (2007). Nanopore sequencing technology: Nanopore preparations. TRENDS in Biotechnology, 25(4), 174-181. 

  20. Nature Communications K Liu 10 1 1 2019 10.1038/s41467-018-07882-8 Liu, K., Pan, C., Kuhn, A., Nievergelt, A. P., Fantner, G. E., Milenkovic, O., & Radenovic, A. (2019). Detecting topological variations of DNA at single-molecule level. Nature Communications, 10(1), 1-9. 

  21. Nature Materials AJ Storm 2 8 537 2003 10.1038/nmat941 Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W., & Dekker, C. (2003). Fabrication of solid-state nanopores with single-nanometre precision. Nature Materials, 2(8), 537-540. 

  22. Nature Nanotechnology AR Hall 5 12 874 2010 10.1038/nnano.2010.237 Hall, A. R., Scott, A., Rotem, D., Mehta, K. K., Bayley, H., & Dekker, C. (2010). Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. Nature Nanotechnology, 5(12), 874-877. 

  23. Analytical Chemistry L Zhu 92 19 13238 2020 10.1021/acs.analchem.0c02396 Zhu, L., Zhang, Z., & Liu, Q. (2020). Deformation-mediated translocation of DNA origami nanoplates through a narrow solid-state nanopore. Analytical Chemistry, 92(19), 13238-13245. 

  24. Nanoscale LJ Steinbock 6 23 14380 2014 10.1039/C4NR05001K Steinbock, L. J., Krishnan, S., Bulushev, R. D., Borgeaud, S., Blokesch, M., Feletti, L., & Radenovic, A. (2014). Probing the size of proteins with glass nanopores. Nanoscale, 6(23), 14380-14387. 

  25. Nature Nanotechnology EC Yusko 12 4 360 2017 10.1038/nnano.2016.267 Yusko, E. C., Bruhn, B. R., Eggenberger, O. M., Houghtaling, J., Rollings, R. C., Walsh, N. C., Nandivada, S., Pindrus, M., Hall, A. R., Sept, D., & Li, J. (2017). Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nature Nanotechnology, 12(4), 360-367. 

  26. ACS Nano J Houghtaling 13 5 5231 2019 10.1021/acsnano.8b09555 Houghtaling, J., Ying, C., Eggenberger, O. M., Fennouri, A., Nandivada, S., Acharjee, M., Li, J., Hall, A. R., & Mayer, M. (2019). Estimation of shape, volume, and dipole moment of individual proteins freely transiting a synthetic nanopore. ACS Nano, 13(5), 5231-5242. 

  27. Nature Nanotechnology R Wei 7 4 257 2012 10.1038/nnano.2012.24 Wei, R., Gatterdam, V., Wieneke, R., Tampé, R., & Rant, U. (2012). Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nature Nanotechnology, 7(4), 257-263. 

  28. Physical Review E AJ Storm 71 5 051903 2005 10.1103/PhysRevE.71.051903 Storm, A. J., Chen, J. H., Zandbergen, H. W., & Dekker, C. (2005). Translocation of double-strand DNA through a silicon oxide nanopore. Physical Review E, 71(5), 051903. 

  29. Scientific Reports I Yanagi 8 1 1 2018 10.1038/s41598-018-28524-5 Yanagi, I., Hamamura, H., Akahori, R., & Takeda, K. I. (2018). Two-step breakdown of a SiN membrane for nanopore fabrication: Formation of thin portion and penetration. Scientific Reports, 8(1), 1-13. 

  30. Scientific Reports I Yanagi 5 1 1 2015 10.1038/srep14656 Yanagi, I., Ishida, T., Fujisaki, K., & Takeda, K. I. (2015). Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process. Scientific Reports, 5(1), 1-13. 

  31. ACS Nano P Waduge 11 6 5706 2017 10.1021/acsnano.7b01212 Waduge, P., Hu, R., Bandarkar, P., Yamazaki, H., Cressiot, B., Zhao, Q., Whitford, P. C., & Wanunu, M. (2017). Nanopore-based measurements of protein size, fluctuations, and conformational changes. ACS Nano, 11(6), 5706-5716. 

  32. Angewandte Chemie International Edition YL Ying 52 50 13154 2013 10.1002/anie.201303529 Ying, Y. L., Zhang, J., Gao, R., & Long, Y. T. (2013). Nanopore-based sequencing and detection of nucleic acids. Angewandte Chemie International Edition, 52(50), 13154-13161. 

  33. Nature Nanotechnology J Feng 10 12 1070 2015 10.1038/nnano.2015.219 Feng, J., Liu, K., Bulushev, R. D., Khlybov, S., Dumcenco, D., Kis, A., & Radenovic, A. (2015). Identification of single nucleotides in MoS2 nanopores. Nature Nanotechnology, 10(12), 1070-1076. 

  34. Nature Methods N Rusk 12 1 12 2015 10.1038/nmeth.3244 Rusk, N. (2015). MinION takes center stage. Nature Methods, 12(1), 12-12. 

  35. Nature Nanotechnology C Dekker 2 209 2007 10.1038/nnano.2007.27 Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2, 209-215. 

  36. ACS Nano K Venta 7 5 4629 2013 10.1021/nn4014388 Venta, K., Shemer, G., Puster, M., Rodriguez-Manzo, J. A., Balan, A., Rosenstein, J. K., Shepard, K., & Drndic, M. (2013). Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores. ACS Nano, 7(5), 4629-4636. 

  37. Nature Methods JK Rosenstein 9 5 487 2012 10.1038/nmeth.1932 Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M., & Shepard, K. L. (2012). Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nature Methods, 9(5), 487-492. 

  38. 10.1021/acs.chemmater.8b02687 Weber, M., Julbe, A., Ayral, A., Miele, P. & Bechelany, M. (2018). Atomic layer deposition for membranes: Basics, challenges, and opportunities. Chemistry of Materials, 30(21), 7368-7390. 

  39. Scientific Reports A Balan 5 1 1 2015 10.1038/srep17775 Balan, A., Chien, C. C., Engelke, R., & Drndić, M. (2015). Suspended solid-state membranes on glass chips with sub 1-pF capacitance for biomolecule sensing applications. Scientific Reports, 5(1), 1-8. 

  40. Nano Letters P Chen 4 7 1333 2004 10.1021/nl0494001 Chen, P., Mitsui, T., Farmer, D. B., Golovchenko, J., Gordon, R. G., & Branton, D. (2004). Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Letters, 4(7), 1333-1337. 

  41. ACS Nano J Larkin 7 11 10121 2013 10.1021/nn404326f Larkin, J., Henley, R., Bell, D. C., Cohen-Karni, T., Rosenstein, J. K., & Wanunu, M. (2013). Slow DNA transport through nanopores in hafnium oxide membranes. ACS Nano, 7(11), 10121-10128. 

  42. Advanced Functional Materials S Banerjee 25 6 936 2015 10.1002/adfm.201403719 Banerjee, S., Wilson, J., Shim, J., Shankla, M., Corbin, E. A., Aksimentiev, A., & Bashir, R. (2015). Slowing DNA transport using graphene-DNA interactions. Advanced Functional Materials, 25(6), 936-946. 

  43. ACS Nano P Waduge 9 7 7352 2015 10.1021/acsnano.5b02369 Waduge, P., Bilgin, I., Larkin, J., Henley, R. Y., Goodfellow, K., Graham, A. C., Bell, D. C., Vamivakas, N., Kar, S., & Wanunu, M. (2015). Direct and scalable deposition of atomically thin low-noise MoS2 membranes on apertures. ACS Nano, 9(7), 7352-7359. 

  44. Advanced Materials S Liu 25 33 4549 2013 10.1002/adma.201301336 Liu, S., Lu, B., Zhao, Q., Li, J., Gao, T., Chen, Y., Zhang, Y., Liu, Z., Fan, Z., & Yang, F. (2013). Boron nitride nanopores: Highly sensitive DNA single-molecule detectors. Advanced Materials, 25(33), 4549-4554. 

  45. Scientific Reports Z Zhou 3 1 1 2013 10.1038/srep03287 Zhou, Z., Hu, Y., Wang, H., Xu, Z., Wang, W., Bai, X., Shan, X., & Lu, X. (2013). DNA translocation through hydrophilic nanopore in hexagonal boron nitride. Scientific Reports, 3(1), 1-5. 

  46. ACS Nano G Danda 11 2 1937 2017 10.1021/acsnano.6b08028 Danda, G., Masih Das, P., Chou, Y. C., Mlack, J. T., Parkin, W. M., Naylor, C. H., Fujisawa, K., Zhang, T., Fulton, L. B., Terrones, M., & Johnson, A. T. (2017). Monolayer WS2 nanopores for DNA translocation with light-adjustable sizes. ACS Nano, 11(2), 1937-1945. 

  47. Nature J Li 412 6843 166 2001 10.1038/35084037 Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M. J., & Golovchenko, J. A. (2001). Ion-beam sculpting at nanometre length scales. Nature, 412(6843), 166-169. 

  48. Nature Communications E Rigo 10 1 1 2019 10.1038/s41467-019-10265-2 Rigo, E., Dong, Z., Park, J. H., Kennedy, E., Hokmabadi, M., Almonte-Garcia, L., Ding, L., Aluru, N., & Timp, G. (2019). Measurements of the size and correlations between ions using an electrolytic point contact. Nature Communications, 10(1), 1-13. 

  49. PLoS ONE H Kwok 9 3 e92880 2014 10.1371/journal.pone.0092880 Kwok, H., Briggs, K., & Tabard-Cossa, V. (2014). Nanopore fabrication by controlled dielectric breakdown. PLoS ONE, 9(3), e92880. 

  50. Scientific Reports I Yanagi 4 1 1 2014 10.1038/srep05000 Yanagi, I., Akahori, R., Hatano, T., & Takeda, K. I. (2014). Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection. Scientific Reports, 4(1), 1-7. 

  51. Nature Protocols M Waugh 15 1 122 2020 10.1038/s41596-019-0255-2 Waugh, M., Briggs, K., Gunn, D., Gibeault, M., King, S., Ingram, Q., Jimenez, A. M., Berryman, S., Lomovtsev, D., Andrzejewski, L., & Tabard-Cossa, V. (2020). Solid-state nanopore fabrication by automated controlled breakdown. Nature Protocols, 15(1), 122-143. 

  52. Langmuir CC Harrell 22 25 10837 2006 10.1021/la061234k Harrell, C. C., Choi, Y., Horne, L. P., Baker, L. A., Siwy, Z. S., & Martin, C. R. (2006). Resistive-pulse DNA detection with a conical nanopore sensor. Langmuir, 22(25), 10837-10843. 

  53. ACS Nano H Yamazaki 12 12 12472 2018 10.1021/acsnano.8b06805 Yamazaki, H., Hu, R., Zhao, Q., & Wanunu, M. (2018). Photothermally assisted thinning of silicon nitride membranes for ultrathin asymmetric nanopores. ACS Nano, 12(12), 12472-12481. 

  54. Journal of Nanomaterials G Sriram 2016 1 2016 10.1155/2016/1753574 Sriram, G., Patil, P., Bhat, M. P., Hegde, R. M., Ajeya, K. V., Udachyan, I., Bhavya, M. B., Gatti, M. G., Uthappa, U. T., Neelgund, G. M., & Jung, H. Y. (2016). Current trends in nanoporous anodized alumina platforms for biosensing applications. Journal of Nanomaterials, 2016, 1-14. 

  55. Journal of Micromechanics and Microengineering LJ De Vreede 26 3 037001 2016 10.1088/0960-1317/26/3/037001 De Vreede, L. J., Muniz, M. S., van den Berg, A., & Eijkel, J. C. (2016). Nanopore fabrication in silicon oxynitride membranes by heating Au-particles. Journal of Micromechanics and Microengineering, 26(3), 037001. 

  56. Nanotechnology T Deng 24 50 505303 2013 10.1088/0957-4484/24/50/505303 Deng, T., Chen, J., Li, M., Wang, Y., Zhao, C., Zhang, Z., & Liu, Z. (2013). Controllable shrinking of inverted-pyramid silicon nanopore arrays by dry-oxygen oxidation. Nanotechnology, 24(50), 505303. 

  57. Analytical Chemistry C Wei 69 22 4627 1997 10.1021/ac970551g Wei, C., Bard, A. J., & Feldberg, S. W. (1997). Current rectification at quartz nanopipet electrodes. Analytical Chemistry, 69(22), 4627-4633. 

  58. Analytical Chemistry L Sun 91 21 14080 2019 10.1021/acs.analchem.9b03848 Sun, L., Shigyou, K., Ando, T., & Watanabe, S. (2019). Thermally driven approach to fill sub-10-nm pipettes with batch production. Analytical Chemistry, 91(21), 14080-14084. 

  59. Nano Letters LJ Steinbock 10 7 2493 2010 10.1021/nl100997s Steinbock, L. J., Otto, O., Chimerel, C., Gornall, J., & Keyser, U. F. (2010). Detecting DNA folding with nanocapillaries. Nano Letters, 10(7), 2493-2497. 

  60. Nanoscale Research Letters Z Yuan 13 1 1 2018 10.1186/s11671-018-2463-z Yuan, Z., Wang, C., Yi, X., Ni, Z., Chen, Y., & Li, T. (2018). Solid-state nanopore. Nanoscale Research Letters, 13(1), 1-10. 

  61. Journal of the American Chemical Society J Ma 141 10 4264 2019 10.1021/jacs.8b08488 Ma, J., Li, K., Li, Z., Qiu, Y., Si, W., Ge, Y., Sha, J., Liu, L., Xie, X., Yi, H., & Ni, Z. (2019). Drastically reduced ion mobility in a nanopore due to enhanced pairing and collisions between dehydrated ions. Journal of the American Chemical Society, 141(10), 4264-4272. 

  62. Scientific Reports I Yanagi 9 1 1 2019 10.1038/s41598-019-49622-y Yanagi, I., Akahori, R., & Takeda, K. I. (2019). Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules. Scientific Reports, 9(1), 1-15. 

  63. IEEE Transactions on Nanotechnology T Hayashi 17 4 727 2018 10.1109/TNANO.2018.2840721 Hayashi, T., Arima, K., Yamashita, N., Park, S., Ma, Z., Tabata, O., & Kawai, K. (2018). Nanopore fabrication of two-dimensional materials on SiO2 membranes using he ion microscopy. IEEE Transactions on Nanotechnology, 17(4), 727-730. 

  64. Nano Letters OK Zahid 16 3 2033 2016 10.1021/acs.nanolett.6b00001 Zahid, O. K., Wang, F., Ruzicka, J. A., Taylor, E. W., & Hall, A. R. (2016). Sequence-specific recognition of microRNAs and other short nucleic acids with solid-state nanopores. Nano Letters, 16(3), 2033-2039. 

  65. Nano Letters RY Henley 16 1 138 2016 10.1021/acs.nanolett.5b03331 Henley, R. Y., Ashcroft, B. A., Farrell, I., Cooperman, B. S., Lindsay, S. M., & Wanunu, M. (2016). Electrophoretic deformation of individual transfer RNA molecules reveals their identity. Nano Letters, 16(1), 138-144. 

  66. Nano Letters M Langecker 15 1 783 2015 10.1021/nl504522n Langecker, M., Ivankin, A., Carson, S., Kinney, S. R., Simmel, F. C., & Wanunu, M. (2015). Nanopores suggest a negligible influence of CpG methylation on nucleosome packaging and stability. Nano Letters, 15(1), 783-790. 

  67. Nano Letters A Singer 12 3 1722 2012 10.1021/nl300372a Singer, A., Rapireddy, S., Ly, D. H., & Meller, A. (2012). Electronic barcoding of a viral gene at the single-molecule level. Nano Letters, 12(3), 1722-1728. 

  68. Nanoscale JS Yu 11 5 2510 2019 10.1039/C8NR09315F Yu, J. S., Hong, S. C., Wu, S., Kim, H. M., Lee, C., Lee, J. S., Lee, J. E., & Kim, K. B. (2019). Differentiation of selectively labeled peptides using solid-state nanopores. Nanoscale, 11(5), 2510-2520. 

  69. Nanoscale X Zhao 11 13 6263 2019 10.1039/C8NR10474C Zhao, X., Ma, R., Hu, Y., Chen, X., Dou, R., Liu, K., Cui, C., Liu, H., Li, Q., Pan, D., & Shan, X. (2019). Translocation of tetrahedral DNA nanostructures through a solid-state nanopore. Nanoscale, 11(13), 6263-6269. 

  70. Nano Letters AT Carlsen 14 10 5488 2014 10.1021/nl501340d Carlsen, A. T., Zahid, O. K., Ruzicka, J. A., Taylor, E. W., & Hall, A. R. (2014). Selective detection and quantification of modified DNA with solid-state nanopores. Nano Letters, 14(10), 5488-5492. 

  71. Nano Letters C Plesa 15 5 3153 2015 10.1021/acs.nanolett.5b00249 Plesa, C., Ruitenberg, J. W., Witteveen, M. J., & Dekker, C. (2015). Detection of individual proteins bound along DNA using solid-state nanopores. Nano Letters, 15(5), 3153-3158. 

  72. Scientific Reports A Squires 5 1 1 2015 10.1038/srep11643 Squires, A., Atas, E., & Meller, A. (2015). Nanopore sensing of individual transcription factors bound to DNA. Scientific Reports, 5(1), 1-11. 

  73. ACS Nano JS Yu 9 5 5289 2015 10.1021/acsnano.5b00784 Yu, J. S., Lim, M. C., Huynh, D. T. N., Kim, H. J., Kim, H. M., Kim, Y. R., & Kim, K. B. (2015). Identifying the location of a single protein along the DNA strand using solid-state nanopores. ACS Nano, 9(5), 5289-5298. 

  74. Nanoscale Research Letters W Asghar 6 1 1 2011 10.1186/1556-276X-6-372 Asghar, W., Ilyas, A., Billo, J. A., & Iqbal, S. M. (2011). Shrinking of solid-state nanopores by direct thermal heating. Nanoscale Research Letters, 6(1), 1-6. 

  75. Angewandte Chemie International Edition Q Li 48 43 8010 2009 10.1002/anie.200903143 Li, Q., Xie, S., Liang, Z., Meng, X., Liu, S., Girault, H. H., & Shao, Y. (2009). fast ion-transfer processes at nanoscopic liquid/liquid interfaces. Angewandte Chemie International Edition, 48(43), 8010-8013. 

  76. ACS Nano R Hu 12 5 4494 2018 10.1021/acsnano.8b00734 Hu, R., Rodrigues, J. V., Waduge, P., Yamazaki, H., Cressiot, B., Chishti, Y., Makowski, L., Yu, D., Shakhnovich, E., Zhao, Q., & Wanunu, M. (2018). Differential enzyme flexibility probed using solid-state nanopores. ACS Nano, 12(5), 4494-4502. 

  77. Electrophoresis A Darvish 40 5 776 2019 10.1002/elps.201800311 Darvish, A., Lee, J. S., Peng, B., Saharia, J., VenkatKalyana Sundaram, R., Goyal, G., Bandara, N., Ahn, C. W., Kim, J., Dutta, P., & Chaiken, I. (2019). Mechanical characterization of HIV-1 with a solid-state nanopore sensor. Electrophoresis, 40(5), 776-783. 

  78. Nature Communications A McMullen 5 1 1 2014 10.1038/ncomms5171 McMullen, A., De Haan, H. W., Tang, J. X., & Stein, D. (2014). Stiff filamentous virus translocations through solid-state nanopores. Nature Communications, 5(1), 1-10. 

  79. ACS Nano A Oukhaled 5 5 3628 2011 10.1021/nn1034795 Oukhaled, A., Cressiot, B., Bacri, L., Pastoriza-Gallego, M., Betton, J. M., Bourhis, E., Jede, R., Gierak, J., Auvray, L., & Pelta, J. (2011). Dynamics of completely unfolded and native proteins through solid-state nanopores as a function of electric driving force. ACS Nano, 5(5), 3628-3638. 

  80. Nature Nanotechnology J Larkin 12 12 1169 2017 10.1038/nnano.2017.176 Larkin, J., Henley, R. Y., Jadhav, V., Korlach, J., & Wanunu, M. (2017). Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing. Nature Nanotechnology, 12(12), 1169-1175. 

  81. Advanced Materials BM Venkatesan 21 27 2771 2009 10.1002/adma.200803786 Venkatesan, B. M., Dorvel, B., Yemenicioglu, S., Watkins, N., Petrov, I., & Bashir, R. (2009). Highly sensitive, mechanically stable nanopore sensors for DNA analysis. Advanced Materials, 21(27), 2771-2776. 

  82. ACS Nano BM Venkatesan 6 1 441 2012 10.1021/nn203769e Venkatesan, B. M., Estrada, D., Banerjee, S., Jin, X., Dorgan, V. E., Bae, M. H., Aluru, N. R., Pop, E., & Bashir, R. (2012). Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA-protein complexes. ACS Nano, 6(1), 441-450. 

  83. Nanoscale KB Park 9 47 18772 2017 10.1039/C7NR05755E Park, K. B., Kim, H. J., Kang, Y. H., Yu, J. S., Chae, H., Lee, K., Kim, H. M., & Kim, K. B. (2017). Highly reliable and low-noise solid-state nanopores with an atomic layer deposited ZnO membrane on a quartz substrate. Nanoscale, 9(47), 18772-18780. 

  84. Electrophoresis JS Lee 42 7-8 991 2021 10.1002/elps.202000356 Lee, J. S., Oviedo, J. P., Bandara, Y. M., Peng, X., Xia, L., Wang, Q., Garcia, K., Wang, J., Kim, M. J., & Kim, M. J. (2021). Detection of nucleotides in hydrated ssDNA via 2D h-BN nanopore with ionic-liquid/salt-water interface. Electrophoresis, 42(7-8), 991-1002. 

  85. Nature S Garaj 467 7312 190 2010 10.1038/nature09379 Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D., & Golovchenko, J. A. (2010). Graphene as a subnanometre trans-electrode membrane. Nature, 467(7312), 190-193. 

  86. Nature Communications GF Schneider 4 2619 2013 10.1038/ncomms3619 Schneider, G. F., Xu, Q., Luik, S., Hage, S., Spoor, J. N., Malladi, S., Zandbergen, H. W., & Dekker, C. (2013). Tailoring the surface chemistry and hydrophobicity of graphene nanopores. Nature Communications, 4, 2619. 

  87. Analytical Chemistry CC Harrell 75 24 6861 2003 10.1021/ac034602n Harrell, C. C., Lee, S. B., & Martin, C. R. (2003). Synthetic single-nanopore and nanotube membranes. Analytical Chemistry, 75(24), 6861-6867. 

  88. ACS Nano K Liu 8 3 2504 2014 10.1021/nn406102h Liu, K., Feng, J., Kis, A., & Radenovic, A. (2014). Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano, 8(3), 2504-2511. 

  89. Nanoscale KB Park 8 10 5755 2016 10.1039/C5NR09085G Park, K. B., Kim, H. J., Kim, H. M., Han, S. A., Lee, K. H., Kim, S. W., & Kim, K. B. (2016). Noise and sensitivity characteristics of solid-state nanopores with a boron nitride 2-D membrane on a pyrex substrate. Nanoscale, 8(10), 5755-5763. 

  90. Nanotechnology AS Prabhu 22 42 425302 2011 10.1088/0957-4484/22/42/425302 Prabhu, A. S., Freedman, K. J., Robertson, J. W., Nikolov, Z., Kasianowicz, J. J., & Kim, M. J. (2011). SEM-induced shrinking of solid-state nanopores for single molecule detection. Nanotechnology, 22(42), 425302. 

  91. Nano letters AJ Storm 5 7 1193 2005 10.1021/nl048030d Storm, A. J., Storm, C., Chen, J., Zandbergen, H., Joanny, J. F., & Dekker, C. (2005). Fast DNA translocation through a solid-state nanopore. Nano letters, 5(7), 1193-1197. 

  92. Nanotechnology G Goyal 27 49 495301 2016 10.1088/0957-4484/27/49/495301 Goyal, G., Lee, Y. B., Darvish, A., Ahn, C. W., & Kim, M. J. (2016). Hydrophilic and size-controlled graphene nanopores for protein detection. Nanotechnology, 27(49), 495301. 

  93. ACS Sensors E Beamish 2 12 1814 2017 10.1021/acssensors.7b00628 Beamish, E., Tabard-Cossa, V., & Godin, M. (2017). Identifying structure in short DNA scaffolds using solid-state nanopores. ACS Sensors, 2(12), 1814-1820. 

  94. Chemical Communications Y Lin 53 84 11564 2017 10.1039/C7CC06775E Lin, Y., Ying, Y. L., Shi, X., Liu, S. C., & Long, Y. T. (2017). Direct sensing of cancer biomarkers in clinical samples with a designed nanopore. Chemical Communications, 53(84), 11564-11567. 

  95. Nanotechnology AT Carlsen 28 8 085304 2017 10.1088/1361-6528/aa564d Carlsen, A. T., Briggs, K., Hall, A. R., & Tabard-Cossa, V. (2017). Solid-state nanopore localization by controlled breakdown of selectively thinned membranes. Nanotechnology, 28(8), 085304. 

  96. Scientific Reports T Gilboa 8 1 1 2018 10.1038/s41598-018-28136-z Gilboa, T., Zrehen, A., Girsault, A., & Meller, A. (2018). Optically-monitored nanopore fabrication using a focused laser beam. Scientific Reports, 8(1), 1-10. 

  97. Advanced Functional Materials T Gilboa 30 18 1900642 2020 10.1002/adfm.201900642 Gilboa, T., Zvuloni, E., Zrehen, A., Squires, A. H., & Meller, A. (2020). Automated, ultra-fast laser-drilling of nanometer scale pores and nanopore arrays in aqueous solutions. Advanced Functional Materials, 30(18), 1900642. 

  98. Small (Weinheim an der Bergstrasse, Germany) K Briggs 10 10 2077 2014 10.1002/smll.201303602 Briggs, K., Kwok, H., & Tabard-Cossa, V. (2014). Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis. Small (Weinheim an der Bergstrasse, Germany), 10(10), 2077-2086. 

  99. The Journal of Physical Chemistry C Y Wang 122 21 11516 2018 10.1021/acs.jpcc.8b01472 Wang, Y., Chen, Q., Deng, T., & Liu, Z. (2018). Self-aligned nanopore formed on a SiO2 pyramidal membrane by a multipulse dielectric breakdown method. The Journal of Physical Chemistry C, 122(21), 11516-11523. 

  100. ACS Sensors X Zhang 5 8 2317 2020 10.1021/acssensors.0c00883 Zhang, X., van Deursen, P. M., Fu, W., & Schneider, G. F. (2020). Facile and ultraclean graphene-on-glass nanopores by controlled electrochemical etching. ACS Sensors, 5(8), 2317-2325. 

  101. Advanced Functional Materials J Kong 29 3 1807555 2019 10.1002/adfm.201807555 Kong, J., Zhu, J., Chen, K., & Keyser, U. F. (2019). Specific biosensing using DNA aptamers and nanopores. Advanced Functional Materials, 29(3), 1807555. 

  102. Analytical Chemistry AYY Loh 90 23 14063 2018 10.1021/acs.analchem.8b04357 Loh, A. Y. Y., Burgess, C. H., Tanase, D. A., Ferrari, G., McLachlan, M. A., Cass, A. E. G., & Albrecht, T. (2018). Electric single-molecule hybridization detector for short DNA fragments. Analytical Chemistry, 90(23), 14063-14071. 

  103. ACS Sensors NE Weckman 4 8 2065 2019 10.1021/acssensors.9b00686 Weckman, N. E., Ermann, N., Gutierrez, R., Chen, K., Graham, J., Tivony, R., Heron, A., & Keyser, U. F. (2019). Multiplexed DNA identification using site specific dCas9 barcodes and nanopore sensing. ACS Sensors, 4(8), 2065-2072. 

  104. Nature Communications S Cai 10 1 1 2019 10.1038/s41467-019-09476-4 Cai, S., Sze, J. Y., Ivanov, A. P., & Edel, J. B. (2019). Small molecule electro-optical binding assay using nanopores. Nature Communications, 10(1), 1-9. 

  105. PLoS ONE JA Bafna 11 6 e0157399 2016 10.1371/journal.pone.0157399 Bafna, J. A., & Soni, G. V. (2016). Fabrication of low noise borosilicate glass nanopores for single molecule sensing. PLoS ONE, 11(6), e0157399. 

  106. Analytical Chemistry B Zhang 76 21 6229 2004 10.1021/ac049288r Zhang, B., Zhang, Y., & White, H. S. (2004). The nanopore electrode. Analytical Chemistry, 76(21), 6229-6238. 

  107. ACS Nano W Li 7 5 4129 2013 10.1021/nn4004567 Li, W., Bell, N. A., Hernández-Ainsa, S., Thacker, V. V., Thackray, A. M., Bujdoso, R., & Keyser, U. F. (2013). Single protein molecule detection by glass nanopores. ACS Nano, 7(5), 4129-4134. 

  108. Nature Communications JY Sze 8 1 1 2017 10.1038/s41467-017-01584-3 Sze, J. Y., Ivanov, A. P., Cass, A. E., & Edel, J. B. (2017). Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers. Nature Communications, 8(1), 1-10. 

  109. Analytical Chemistry M Kubánková 91 10 6880 2019 10.1021/acs.analchem.9b01221 Kubánková, M., Lin, X., Albrecht, T., Edel, J. B., & Kuimova, M. K. (2019). Rapid fragmentation during seeded lysozyme aggregation revealed at the single molecule level. Analytical Chemistry, 91(10), 6880-6886. 

  110. Nature Nanotechnology NA Bell 11 7 645 2016 10.1038/nnano.2016.50 Bell, N. A., & Keyser, U. F. (2016). Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. Nature Nanotechnology, 11(7), 645-651. 

  111. Mineralogical Magazine P Henderson 42 322 306 1978 10.1180/minmag.1978.042.322.40 Henderson, P. (1978). Fleischer, (PB) Price, and (RM) Walker. Nuclear tracks in solids: Principles and applications. Berkeley and London (Univ. California Press), 1975. xxii+ 605 pp., 205 figs., I pl. Price. Mineralogical Magazine, 42(322), 306-307. 

  112. Applied Physics A Z Siwy 76 5 781 2003 10.1007/s00339-002-1982-7 Siwy, Z., Dobrev, D., Neumann, R., Trautmann, C., & Voss, K. (2003). Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal. Applied Physics A, 76(5), 781-785. 

  113. Nano Letters MY Wu 9 479 2009 10.1021/nl803613s Wu, M. Y., Smeets, R. M., Zandbergen, M., Ziese, U., Krapf, D., Batson, P. E., Dekker, N. H., Dekker, C., & Zandbergen, H. W. (2009). Control of shape and material composition of solid-state nanopores. Nano Letters, 9, 479-484. 

  114. Nanotechnology M Van den Hout 21 11 115304 2010 10.1088/0957-4484/21/11/115304 Van den Hout, M., Hall, A. R., Wu, M. Y., Zandbergen, H. W., Dekker, C., & Dekker, N. H. (2010). Controlling nanopore size, shape and stability. Nanotechnology, 21(11), 115304. 

  115. Applied Physics Letters D Emmrich 108 16 163103 2016 10.1063/1.4947277 Emmrich, D., Beyer, A., Nadzeyka, A., Bauerdick, S., Meyer, J. C., Kotakoski, J., & Gölzhäuser, A. (2016). Nanopore fabrication and characterization by helium ion microscopy. Applied Physics Letters, 108(16), 163103. 

  116. Microelectronic Engineering MY Wu 84 5-8 779 2007 Wu, M. Y., Smeets, R. M., Zandbergen, M., Ziese, U., Krapf, D., Batson, P. E., Dekker, N. H., Dekker, C., & Zandbergen, H. W. (2007). Sub-5 nm FIB direct patterning of nanodevices. Microelectronic Engineering, 84(5-8), 779-783. 

  117. Nanotechnology CJ Lo 17 13 3264 2006 10.1088/0957-4484/17/13/031 Lo, C. J., Aref, T., & Bezryadin, A. (2006). Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology, 17(13), 3264. 

  118. Sensors F Sawafta 14 5 8150 2014 10.3390/s140508150 Sawafta, F., Carlsen, A. T., & Hall, A. R. (2014). Membrane thickness dependence of nanopore formation with a focused helium ion beam. Sensors, 14(5), 8150-8161. 

  119. ACS Nano YC Chou 14 6 6715 2020 10.1021/acsnano.9b09964 Chou, Y. C., Masih Das, P., Monos, D. S., & Drndić, M. (2020). Lifetime and stability of silicon nitride nanopores and nanopore arrays for ionic measurements. ACS Nano, 14(6), 6715-6728. 

  120. Electrochimica Acta L Zaraska 104 549 2013 10.1016/j.electacta.2012.12.059 Zaraska, L., Czopik, N., Bobruk, M., Sulka, G. D., Mech, J., & Jaskuła, M. (2013). Synthesis of nanoporous tin oxide layers by electrochemical anodization. Electrochimica Acta, 104, 549-557. 

  121. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms PY Apel 184 3 337 2001 10.1016/S0168-583X(01)00722-4 Apel, P. Y., Korchev, Y. E., Siwy, Z., Spohr, R., & Yoshida, M. (2001). Diode-like single-ion track membrane prepared by electro-stopping. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(3), 337-346. 

  122. Physical Review Letters Z Siwy 89 19 198103 2002 10.1103/PhysRevLett.89.198103 Siwy, Z., & Fuliński, A. (2002). Fabrication of a synthetic nanopore ion pump. Physical Review Letters, 89(19), 198103. 

  123. Science H Masuda 268 5216 1466 1995 10.1126/science.268.5216.1466 Masuda, H., & Fukuda, K. (1995). Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 268(5216), 1466-1468. 

  124. Chemical Reviews W Lee 114 15 7487 2014 10.1021/cr500002z Lee, W., & Park, S. J. (2014). Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chemical Reviews, 114(15), 7487-7556. 

  125. Langmuir B Pandey 28 38 13705 2012 10.1021/la302672a Pandey, B., Thapa, P. S., Higgins, D. A., & Ito, T. (2012). Formation of self-organized nanoporous anodic oxide from metallic gallium. Langmuir, 28(38), 13705-13711. 

  126. Electrochimica Acta GD Sulka 104 526 2013 10.1016/j.electacta.2012.12.121 Sulka, G. D., Kapusta-Kołodziej, J., Brzózka, A., & Jaskuła, M. (2013). Anodic growth of TiO2 nanopore arrays at various temperatures. Electrochimica Acta, 104, 526-535. 

  127. Chemistry of Materials S Berger 20 10 3245 2008 10.1021/cm8004024 Berger, S., Tsuchiya, H., & Schmuki, P. (2008). Transition from nanopores to nanotubes: Self-ordered anodic oxide structures on titanium-aluminides. Chemistry of Materials, 20(10), 3245-3247. 

  128. Nano Letters SW Nam 9 5 2044 2009 10.1021/nl900309s Nam, S. W., Rooks, M. J., Kim, K. B., & Rossnagel, S. M. (2009). Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Letters, 9(5), 2044-2048. 

  129. Nature Nanotechnology S Zeng 14 11 1056 2019 10.1038/s41565-019-0549-0 Zeng, S., Wen, C., Solomon, P., Zhang, S. L., & Zhang, Z. (2019). Rectification of protein translocation in truncated pyramidal nanopores. Nature Nanotechnology, 14(11), 1056-1062. 

  130. Nanotechnology MJ Kim 18 20 205302 2007 10.1088/0957-4484/18/20/205302 Kim, M. J., McNally, B., Murata, K., & Meller, A. (2007). Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology, 18(20), 205302. 

  131. ACS Nano R Wang 12 11 11648 2018 10.1021/acsnano.8b07055 Wang, R., Gilboa, T., Song, J., Huttner, D., Grinstaff, M. W., & Meller, A. (2018). Single-molecule discrimination of labeled DNAs and polypeptides using photoluminescent-free TiO2 nanopores. ACS Nano, 12(11), 11648-11656. 

  132. ACS Nano M Mojtabavi 13 3 3042 2019 10.1021/acsnano.8b08017 Mojtabavi, M., VahidMohammadi, A., Liang, W., Beidaghi, M., & Wanunu, M. (2019). Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. ACS Nano, 13(3), 3042-3053. 

  133. Nano Letters K Chen 20 5 3754 2020 10.1021/acs.nanolett.0c00755 Chen, K., Zhu, J., Boskovic, F., & Keyser, U. F. (2020). Nanopore-based DNA hard drives for rewritable and secure data storage. Nano Letters, 20(5), 3754-3760. 

  134. ACS Nano JA Rodríguez-Manzo 9 6 6555 2015 10.1021/acsnano.5b02531 Rodríguez-Manzo, J. A., Puster, M., Nicolaï, A., Meunier, V., & Drndic, M. (2015). DNA translocation in nanometer thick silicon nanopores. ACS Nano, 9(6), 6555-6564. 

  135. Nature Nanotechnology F Traversi 8 12 939 2013 10.1038/nnano.2013.240 Traversi, F., Raillon, C., Benameur, S. M., Liu, K., Khlybov, S., Tosun, M., Krasnozhon, D., Kis, A., & Radenovic, A. (2013). Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nature Nanotechnology, 8(12), 939-945. 

  136. Nano Letters GF Schneider 10 8 3163 2010 10.1021/nl102069z Schneider, G. F., Kowalczyk, S. W., Calado, V. E., Pandraud, G., Zandbergen, H. W., Vandersypen, L. M., & Dekker, C. (2010). DNA translocation through graphene nanopores. Nano Letters, 10(8), 3163-3167. 

  137. Science AK Geim 324 5934 1530 2009 10.1126/science.1158877 Geim, A. K. (2009). Graphene: Status and prospects. Science, 324(5934), 1530-1534. 

  138. Nano Letters CA Merchant 10 8 2915 2010 10.1021/nl101046t Merchant, C. A., Healy, K., Wanunu, M., Ray, V., Peterman, N., Bartel, J., Fischbein, M. D., Venta, K., Luo, Z., Johnson, A. C., & Drndic, M. (2010). DNA translocation through graphene nanopores. Nano Letters, 10(8), 2915-2921. 

  139. Nanoscale L Yuan 7 16 7402 2015 10.1039/C5NR00383K Yuan, L., & Huang, L. (2015). Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale, 7(16), 7402-7408. 

  140. ACS Nano SJ Heerema 12 3 2623 2018 10.1021/acsnano.7b08635 Heerema, S. J., Vicarelli, L., Pud, S., Schouten, R. N., Zandbergen, H. W., & Dekker, C. (2018). Probing DNA translocations with inplane current signals in a graphene nanoribbon with a nanopore. ACS Nano, 12(3), 2623-2633. 

  141. Biophysical Journal M Wanunu 95 10 4716 2008 10.1529/biophysj.108.140475 Wanunu, M., Sutin, J., McNally, B., Chow, A., & Meller, A. (2008). DNA translocation governed by interactions with solid-state nanopores. Biophysical Journal, 95(10), 4716-4725. 

  142. RSC Advances L Liang 3 7 2445 2013 10.1039/c2ra22109h Liang, L., Cui, P., Wang, Q., Wu, T., Ågren, H., & Tu, Y. (2013). Theoretical study on key factors in DNA sequencing with graphene nanopores. RSC Advances, 3(7), 2445-2453. 

  143. Soft Matter B Luan 6 2 243 2010 10.1039/B917973A Luan, B., & Aksimentiev, A. (2010). Electric and electrophoretic inversion of the DNA charge in multivalent electrolytes. Soft Matter, 6(2), 243-246. 

  144. ACS Nano Y He 5 7 5509 2011 10.1021/nn201883b He, Y., Tsutsui, M., Fan, C., Taniguchi, M., & Kawai, T. (2011). Controlling DNA translocation through gate modulation of nanopore wall surface charges. ACS Nano, 5(7), 5509-5518. 

  145. Nature Nanotechnology M Wanunu 5 2 160 2010 10.1038/nnano.2009.379 Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y., & Meller, A. (2010). Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nature Nanotechnology, 5(2), 160-165. 

  146. Scientific Reports M Tsutsui 2 1 1 2012 10.1038/srep00394 Tsutsui, M., He, Y., Furuhashi, M., Rahong, S., Taniguchi, M., & Kawai, T. (2012). Transverse electric field dragging of DNA in a nanochannel. Scientific Reports, 2(1), 1-7. 

  147. Nano Letters SW Kowalczyk 12 2 1038 2012 10.1021/nl204273h Kowalczyk, S. W., Wells, D. B., Aksimentiev, A., & Dekker, C. (2012). Slowing down DNA translocation through a nanopore in lithium chloride. Nano Letters, 12(2), 1038-1044. 

  148. ACS Nano BN Anderson 7 2 1408 2013 10.1021/nn3051677 Anderson, B. N., Muthukumar, M., & Meller, A. (2013). pH tuning of DNA translocation time through organically functionalized nanopores. ACS Nano, 7(2), 1408-1414. 

  149. Proceedings of the National Academy of Sciences IC Yeh 101 33 12177 2004 10.1073/pnas.0402699101 Yeh, I. C., & Hummer, G. (2004). Nucleic acid transport through carbon nanotube membranes. Proceedings of the National Academy of Sciences, 101(33), 12177-12182. 

  150. Nanoscale B Luan 4 4 1068 2012 10.1039/C1NR11201E Luan, B., Stolovitzky, G., & Martyna, G. (2012). Slowing and controlling the translocation of DNA in a solid-state nanopore. Nanoscale, 4(4), 1068-1077. 

  151. PLoS ONE S Akca 6 4 e18442 2011 10.1371/journal.pone.0018442 Akca, S., Foroughi, A., Frochtzwajg, D., & Postma, H. W. C. (2011). Competing interactions in DNA assembly on graphene. PLoS ONE, 6(4), e18442. 

  152. Nanoscale H Yoshida 8 43 18270 2016 10.1039/C6NR06575A Yoshida, H., Goto, Y., Akahori, R., Tada, Y., Terada, S., Komura, M., & Iyoda, T. (2016). Slowing the translocation of single-stranded DNA by using nano-cylindrical passage self-assembled by amphiphilic block copolymers. Nanoscale, 8(43), 18270-18276. 

  153. Scientific Reports Y Goto 5 1 1 2015 10.1038/srep16640 Goto, Y., Haga, T., Yanagi, I., Yokoi, T., & Takeda, K. I. (2015). Deceleration of single-stranded DNA passing through a nanopore using a nanometre-sized bead structure. Scientific Reports, 5(1), 1-7. 

  154. Journal of the American Chemical Society AH Squires 135 44 16304 2013 10.1021/ja408685x Squires, A. H., Hersey, J. S., Grinstaff, M. W., & Meller, A. (2013). A nanopore-nanofiber mesh biosensor to control DNA translocation. Journal of the American Chemical Society, 135(44), 16304-16307. 

  155. Nanoscale Z Tang 7 31 13207 2015 10.1039/C5NR03084F Tang, Z., Liang, Z., Lu, B., Li, J., Hu, R., Zhao, Q., & Yu, D. (2015). Gel mesh as “brake” to slow down DNA translocation through solid-state nanopores. Nanoscale, 7(31), 13207-13214. 

  156. Nano Letters C Plesa 13 2 658 2013 10.1021/nl3042678 Plesa, C., Kowalczyk, S. W., Zinsmeester, R., Grosberg, A. Y., Rabin, Y., & Dekker, C. (2013). Fast translocation of proteins through solid state nanopores. Nano Letters, 13(2), 658-663. 

  157. Zeitschrift für Physikalische Chemie MV Smoluchowski 92 129 1917 Smoluchowski, M. V. (1917). Engineering biological structures of prescribed shape using self-assembled multicellular systems. Zeitschrift für Physikalische Chemie, 92, 129. 

  158. Analytical Chemistry D Pedone 81 23 9689 2009 10.1021/ac901877z Pedone, D., Firnkes, M., & Rant, U. (2009). Data analysis of translocation events in nanopore experiments. Analytical Chemistry, 81(23), 9689-9694. 

  159. Biophysical Journal J Larkin 106 3 696 2014 10.1016/j.bpj.2013.12.025 Larkin, J., Henley, R. Y., Muthukumar, M., Rosenstein, J. K., & Wanunu, M. (2014). High-bandwidth protein analysis using solid-state nanopores. Biophysical Journal, 106(3), 696-704. 

  160. ACS Applied Materials and Interfaces A Asandei 8 20 13166 2016 10.1021/acsami.6b03697 Asandei, A., Schiopu, I., Chinappi, M., Seo, C. H., Park, Y., & Luchian, T. (2016). Electroosmotic trap against the electrophoretic force near a protein nanopore reveals peptide dynamics during capture and translocation. ACS Applied Materials and Interfaces, 8(20), 13166-13179. 

  161. The Journal of Chemical Physics M Muthukumar 141 8 081104 2014 10.1063/1.4894401 Muthukumar, M. (2014). Communication: Charge, diffusion, and mobility of proteins through nanopores. The Journal of Chemical Physics, 141(8), 081104. 

  162. Nanotechnology A Kumar 24 49 495503 2013 10.1088/0957-4484/24/49/495503 Kumar, A., Park, K. B., Kim, H. M., & Kim, K. B. (2013). Noise and its reduction in graphene based nanopore devices. Nanotechnology, 24(49), 495503. 

  163. ACS Nano A Fragasso 14 2 1338 2020 10.1021/acsnano.9b09353 Fragasso, A., Schmid, S., & Dekker, C. (2020). Comparing current noise in biological and solid-state nanopores. ACS Nano, 14(2), 1338-1349. 

  164. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena PS Waggoner 29 3 032206 2011 10.1116/1.3585536 Waggoner, P. S., Kuan, A. T., Polonsky, S., Peng, H., & Rossnagel, S. M. (2011). Increasing the speed of solid-state nanopores. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 29(3), 032206. 

  165. ACS Nano JD Uram 2 5 857 2008 10.1021/nn700322m Uram, J. D., Ke, K., & Mayer, M. (2008). Noise and bandwidth of current recordings from submicrometer pores and nanopores. ACS Nano, 2(5), 857-872. 

  166. 10.1103/PhysRevLett.97.088101 Smeets, R. M., Keyser, U. F., Wu, M. Y., Dekker, N. H., & Dekker, C. (2006). Nanobubbles in solid-state nanopores. Physical Review Letters, 97(8), 088101. 

  167. 10.1039/D1CP00253H Marion, S., Macha, M., Davis, S. J., Chernev, A., & Radenovic, A. (2021). Wetting of nanopores probed with pressure. Physical Chemistry Chemical Physics, 23(8), 4975-4987. 

  168. Nano Letters S Gravelle 19 10 7265 2019 10.1021/acs.nanolett.9b02858 Gravelle, S., Netz, R. R., & Bocquet, L. (2019). Adsorption kinetics in open nanopores as a source of low-frequency noise. Nano Letters, 19(10), 7265-7272. 

  169. Nanotechnology E Beamish 23 40 405301 2012 10.1088/0957-4484/23/40/405301 Beamish, E., Kwok, H., Tabard-Cossa, V., & Godin, M. (2012). Precise control of the size and noise of solid-state nanopores using high electric fields. Nanotechnology, 23(40), 405301. 

  170. ACS Nano LJ Steinbock 7 12 11255 2013 10.1021/nn405029j Steinbock, L. J., Bulushev, R. D., Krishnan, S., Raillon, C., & Radenovic, A. (2013). DNA translocation through low-noise glass nanopores. ACS Nano, 7(12), 11255-11262. 

  171. Nano Letters A Balan 14 12 7215 2014 10.1021/nl504345y Balan, A., Machielse, B., Niedzwiecki, D., Lin, J., Ong, P., Engelke, R., Shepard, K. L., & Drndić, M. (2014). Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths. Nano Letters, 14(12), 7215-7220. 

  172. 10.1088/1361-6528/ab2d35 Fragasso, A., Pud, S. & Dekker, C. (2019). 1/f noise in solid-state nanopores is governed by access and surface regions. Nanotechnology, 30(39), 395202. 

  173. Review of Scientific Instruments OA Saleh 72 12 4449 2001 10.1063/1.1419224 Saleh, O. A., & Sohn, L. L. (2001). Quantitative sensing of nanoscale colloids using a microchip coulter counter. Review of Scientific Instruments, 72(12), 4449-4451. 

  174. Chemical Society Reviews N Varongchayakul 47 23 8512 2018 10.1039/C8CS00106E Varongchayakul, N., Song, J., Meller, A., & Grinstaff, M. W. (2018). Single-molecule protein sensing in a nanopore: A tutorial. Chemical Society Reviews, 47(23), 8512-8524. 

  175. Proceedings of the National Academy of Sciences RM Smeets 105 2 417 2008 10.1073/pnas.0705349105 Smeets, R. M., Keyser, U. F., Dekker, N. H., & Dekker, C. (2008). Noise in solid-state nanopores. Proceedings of the National Academy of Sciences, 105(2), 417-421. 

  176. Cell LF Liu 19 3 697 1980 10.1016/S0092-8674(80)80046-8 Liu, L. F., Liu, C. C., & Alberts, B. M. (1980). Type II DNA topoisomerases: Enzymes that can unknot a topologically knotted DNA molecule via a reversible double-strand break. Cell, 19(3), 697-707. 

  177. Nature Nanotechnology C Plesa 11 12 1093 2016 10.1038/nnano.2016.153 Plesa, C., Verschueren, D., Pud, S., Van Der Torre, J., Ruitenberg, J. W., Witteveen, M. J., Jonsson, M. P., Grosberg, A. Y., Rabin, Y., & Dekker, C. (2016). Direct observation of DNA knots using a solid-state nanopore. Nature Nanotechnology, 11(12), 1093-1097. 

  178. Nature Communications RK Sharma 10 1 1 2019 10.1038/s41467-018-07882-8 Sharma, R. K., Agrawal, I., Dai, L., Doyle, P. S., & Garaj, S. (2019). Complex DNA knots detected with a nanopore sensor. Nature Communications, 10(1), 1-9. 

  179. ACS Nano J Shim 9 1 290 2015 10.1021/nn5045596 Shim, J., Kim, Y., Humphreys, G. I., Nardulli, A. M., Kosari, F., Vasmatzis, G., Taylor, W. R., Ahlquist, D. A., Myong, S., & Bashir, R. (2015). Nanopore-based assay for detection of methylation in double-stranded DNA fragments. ACS Nano, 9(1), 290-300. 

  180. Analytical Chemistry M Charron 91 19 12228 2019 10.1021/acs.analchem.9b01900 Charron, M., Briggs, K., King, S., Waugh, M., & Tabard-Cossa, V. (2019). Precise DNA concentration measurements with nanopores by controlled counting. Analytical Chemistry, 91(19), 12228-12237. 

  181. Journal of the American Chemical Society NA Bell 137 5 2035 2015 10.1021/ja512521w Bell, N. A., & Keyser, U. F. (2015). Specific protein detection using designed DNA carriers and nanopores. Journal of the American Chemical Society, 137(5), 2035-2041. 

  182. 10.1063/1.2180868 Han, A., Schürmann, G., Mondin, G., Bitterli, R.A., Hegelbach, N.G., de Rooij, N.F. & Staufer, U. (2006). Sensing protein molecules using nanofabricated pores. Applied Physics Letters, 88(9), 093901. 

  183. Journal of the American Chemical Society DS Talaga 131 26 9287 2009 10.1021/ja901088b Talaga, D. S., & Li, J. (2009). Single-molecule protein unfolding in solid state nanopores. Journal of the American Chemical Society, 131(26), 9287-9297. 

  184. Nano Letters M Firnkes 10 6 2162 2010 10.1021/nl100861c Firnkes, M., Pedone, D., Knezevic, J., Doblinger, M., & Rant, U. (2010). Electrically facilitated translocations of proteins through silicon nitride nanopores: Conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. Nano Letters, 10(6), 2162-2167. 

  185. ACS Nano J Saharia 13 4 4246 2019 10.1021/acsnano.8b09293 Saharia, J., Bandara, Y. N. D., Goyal, G., Lee, J. S., Karawdeniya, B. I., & Kim, M. J. (2019). Molecular-level profiling of human serum transferrin protein through assessment of nanopore-based electrical and chemical responsiveness. ACS Nano, 13(4), 4246-4254. 

  186. ACS Nano EC Yusko 6 7 5909 2012 10.1021/nn300542q Yusko, E. C., Prangkio, P., Sept, D., Rollings, R. C., Li, J., & Mayer, M. (2012). Single-particle characterization of Aβ oligomers in solution. ACS Nano, 6(7), 5909-5919. 

  187. ACS Sensors H Kaur 4 1 100 2018 10.1021/acssensors.8b00976 Kaur, H., Nandivada, S., Acharjee, M. C., McNabb, D. S., & Li, J. (2018). Estimating RNA polymerase protein binding sites on λ DNA using solid-state nanopores. ACS Sensors, 4(1), 100-109. 

  188. Nano Letters C Raillon 12 3 1157 2012 10.1021/nl3002827 Raillon, C., Cousin, P., Traversi, F., Garcia-Cordero, E., Hernandez, N., & Radenovic, A. (2012). Nanopore detection of single molecule RNAP-DNA transcription complex. Nano Letters, 12(3), 1157-1164. 

  189. Nano Letters J Kong 16 6 3557 2016 10.1021/acs.nanolett.6b00627 Kong, J., Bell, N. A., & Keyser, U. F. (2016). Quantifying nanomolar protein concentrations using designed DNA carriers and solid-state nanopores. Nano Letters, 16(6), 3557-3562. 

  190. Small (Weinheim an der Bergstrasse, Germany) JD Uram 2 8-9 967 2006 10.1002/smll.200600006 Uram, J. D., Ke, K., Hunt, A. J., & Mayer, M. (2006). Submicrometer pore-based characterization and quantification of antibody-virus interactions. Small (Weinheim an der Bergstrasse, Germany), 2(8-9), 967-972. 

  191. Small (Weinheim an der Bergstrasse, Germany) KJ Freedman 9 5 750 2013 10.1002/smll.201201423 Freedman, K. J., Bastian, A. R., Chaiken, I., & Kim, M. J. (2013). Solid-state nanopore detection of protein complexes: Applications in healthcare and protein kinetics. Small (Weinheim an der Bergstrasse, Germany), 9(5), 750-759. 

  192. Journal of the American Chemical Society K Zhou 133 6 1618 2011 10.1021/ja108228x Zhou, K., Li, L., Tan, Z., Zlotnick, A., & Jacobson, S. C. (2011). Characterization of hepatitis B virus capsids by resistive-pulse sensing. Journal of the American Chemical Society, 133(6), 1618-1621. 

  193. Nanoscale M Tsutsui 11 43 20475 2019 10.1039/C9NR07039G Tsutsui, M., Yamazaki, T., Tatematsu, K., Yokota, K., Esaki, Y., Kubo, Y., Deguchi, H., Arima, A., Kuroda, S. I., & Kawai, T. (2019). High-throughput single nanoparticle detection using a feed-through channel-integrated nanopore. Nanoscale, 11(43), 20475-20484. 

  194. Scientific Reports A Arima 8 1 1 2018 10.1038/s41598-018-34665-4 Arima, A., Tsutsui, M., Harlisa, I. H., Yoshida, T., Tanaka, M., Yokota, K., Tonomura, W., Taniguchi, M., Okochi, M., Washio, T., & Kawai, T. (2018). Selective detections of single-viruses using solid-state nanopores. Scientific Reports, 8(1), 1-7. 

  195. ACS Sensors X Shi 1 9 1086 2016 10.1021/acssensors.6b00408 Shi, X., Gao, R., Ying, Y. L., Si, W., Chen, Y. F., & Long, Y. T. (2016). A scattering nanopore for single nanoentity sensing. ACS Sensors, 1(9), 1086-1090. 

  196. Nano Letters X Shi 18 12 8003 2018 10.1021/acs.nanolett.8b04146 Shi, X., Verschueren, D. V., & Dekker, C. (2018). Active delivery of single DNA molecules into a plasmonic nanopore for label-free optical sensing. Nano Letters, 18(12), 8003-8010. 

  197. Nano Letters V Jadhav 19 2 921 2018 10.1021/acs.nanolett.8b04170 Jadhav, V., Hoogerheide, D. P., Korlach, J., & Wanunu, M. (2018). Porous Zero-Mode Waveguides for Picogram-Level DNA Capture. Nano Letters, 19(2), 921-929. 

  198. Nano Letters D Garoli 19 11 7553 2019 10.1021/acs.nanolett.9b02759 Garoli, D., Yamazaki, H., Maccaferri, N., & Wanunu, M. (2019). Plasmonic nanopores for single-molecule detection and manipulation: Toward sequencing applications. Nano Letters, 19(11), 7553-7562. 

  199. Nature Nanotechnology T Ohshiro 9 10 835 2014 10.1038/nnano.2014.193 Ohshiro, T., Tsutsui, M., Yokota, K., Furuhashi, M., Taniguchi, M., & Kawai, T. (2014). Detection of post-translational modifications in single peptides using electron tunnelling currents. Nature Nanotechnology, 9(10), 835-840. 

  200. Nanotechnology V Dimitrov 21 6 065502 2010 10.1088/0957-4484/21/6/065502 Dimitrov, V., Mirsaidov, U., Wang, D., Sorsch, T., Mansfield, W., Miner, J., Klemens, F., Cirelli, R., Yemenicioglu, S., & Timp, G. (2010). Nanopores in solid-state membranes engineered for single molecule detection. Nanotechnology, 21(6), 065502. 

  201. Nanotechnology V Tabard-Cossa 18 30 305505 2007 10.1088/0957-4484/18/30/305505 Tabard-Cossa, V., Trivedi, D., Wiggin, M., Jetha, N. N., & Marziali, A. (2007). Noise analysis and reduction in solid-state nanopores. Nanotechnology, 18(30), 305505. 

  202. Advanced Materials K Lee 30 42 1704680 2018 10.1002/adma.201704680 Lee, K., Park, K. B., Kim, H. J., Yu, J. S., Chae, H., Kim, H. M., & Kim, K. B. (2018). Recent progress in solid-state nanopores. Advanced Materials, 30(42), 1704680. 

  203. Nanotechnology RMM Smeets 20 9 095501 2009 10.1088/0957-4484/20/9/095501 Smeets, R. M. M., Dekker, N. H., & Dekker, C. (2009). Low-frequency noise in solid-state nanopores. Nanotechnology, 20(9), 095501. 

  204. 1993 The Axon guide for electrophysiology and biophysics: Laboratory techniques Sherman-Gold, R. (Ed.). (1993). The Axon guide for electrophysiology and biophysics: Laboratory techniques. Axon Instruments. 

  205. Nanotechnology SJ Heerema 26 7 074001 2015 10.1088/0957-4484/26/7/074001 Heerema, S. J., Schneider, G. F., Rozemuller, M., Vicarelli, L., Zandbergen, H. W., & Dekker, C. (2015). 1/f noise in graphene nanopores. Nanotechnology, 26(7), 074001. 

  206. Nano Letters H Chang 4 8 1551 2004 10.1021/nl049267c Chang, H., Kosari, F., Andreadakis, G., Alam, M. A., Vasmatzis, G., & Bashir, R. (2004). DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels. Nano Letters, 4(8), 1551-1556. 

  207. Nano Letters RM Smeets 6 1 89 2006 10.1021/nl052107w Smeets, R. M., Keyser, U. F., Krapf, D., Wu, M. Y., Dekker, N. H., & Dekker, C. (2006). Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Letters, 6(1), 89-95. 

  208. Frontiers in Microbiology L Yang 7 1500 2016 10.3389/fmicb.2016.01500 Yang, L., & Yamamoto, T. (2016). Quantification of virus particles using nanopore-based resistive-pulse sensing techniques. Frontiers in Microbiology, 7, 1500. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로