최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기International journal of precision engineering and manufacturing, v.22 no.12, 2021년, pp.2001 - 2026
Haq, Muhammad Refatul , Lee, Bong Jae , Lee, Jungchul
초록이 없습니다.
Electrophoresis Y Chen 22 2 187 2001 10.1002/1522-2683(200101)22:2<187::AID-ELPS187>3.0.CO;2-0 Chen, Y., & Pepin, A. (2001). Nanofabrication: Conventional and nonconventional methods. Electrophoresis, 22(2), 187-207.
ACS Applied Materials and Interfaces L Zhu 10 31 26555 2018 10.1021/acsami.8b09505 Zhu, L., Xu, Y., Ali, I., Liu, L., Wu, H., Lu, Z., & Liu, Q. (2018). Solid-state nanopore single-molecule sensing of DNAzyme cleavage reaction assisted with nucleic acid nanostructure. ACS Applied Materials and Interfaces, 10(31), 26555-26565.
Journal of Membrane Science G Dong 520 860 2016 10.1016/j.memsci.2016.08.059 Dong, G., Hou, J., Wang, J., Zhang, Y., Chen, V., & Liu, J. (2016). Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. Journal of Membrane Science, 520, 860-868.
ACS Nano M Caglar 14 3 2729 2019 10.1021/acsnano.9b08168 Caglar, M., Silkina, I., Brown, B. T., Thorneywork, A. L., Burton, O. J., Babenko, V., Gilbert, S. M., Zettl, A., Hofmann, S., & Keyser, U. F. (2019). Tunable anion-selective transport through monolayer graphene and hexagonal boron nitride. ACS Nano, 14(3), 2729-2738.
ACS ES&T Water Y Liu 1 1 34 2020 10.1021/acsestwater.0c00015 Liu, Y., Zhang, Z., & Wang, S. (2020). Carbon nanopore-tailored reverse osmotic water desalination. ACS ES&T Water, 1(1), 34-47.
Advanced Functional Materials L Cao 28 39 1804189 2018 10.1002/adfm.201804189 Cao, L., Wen, Q., Feng, Y., Ji, D., Li, H., Li, N., Jiang, L., & Guo, W. (2018). On the origin of ion selectivity in ultrathin nanopores: Insights for membrane-scale osmotic energy conversion. Advanced Functional Materials, 28(39), 1804189.
Nature J Feng 536 7615 197 2016 10.1038/nature18593 Feng, J., Graf, M., Liu, K., Ovchinnikov, D., Dumcenco, D., Heiranian, M., Nandigana, V., Aluru, N. R., Kis, A., & Radenovic, A. (2016). Single-layer MoS2 nanopores as nanopower generators. Nature, 536(7615), 197-200.
Current Opinion in Electrochemistry Y Lin 7 172 2018 10.1016/j.coelec.2017.12.002 Lin, Y., Ying, Y. L., & Long, Y. T. (2018). Nanopore confinement for electrochemical sensing at the single-molecule level. Current Opinion in Electrochemistry, 7, 172-178.
Nature nanotechnology M Wanunu 5 11 807 2010 10.1038/nnano.2010.202 Wanunu, M., Dadosh, T., Ray, V., Jin, J., McReynolds, L., & Drndić, M. (2010). Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nature nanotechnology, 5(11), 807-814.
Biophysical Journal M Akeson 77 6 3227 1999 10.1016/S0006-3495(99)77153-5 Akeson, M., Branton, D., Kasianowicz, J. J., Brandin, E., & Deamer, D. W. (1999). Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophysical Journal, 77(6), 3227-3233.
Scientific Reports MH Lee 4 1 1 2014 10.1038/srep07448 Lee, M. H., Kumar, A., Park, K. B., Cho, S. Y., Kim, H. M., Lim, M. C., Kim, Y. R., & Kim, K. B. (2014). A low-noise solid-state nanopore platform based on a highly insulating substrate. Scientific Reports, 4(1), 1-7.
ChemistrySelect D Yilmaz 6 1 59 2021 10.1002/slct.202004425 Yilmaz, D., Kaya, D., Kececi, K., & Dinler, A. (2021). Role of nanopore geometry in particle resolution by resistive-pulse sensing. ChemistrySelect, 6(1), 59-67.
Nano Letters AP Ivanov 11 1 279 2011 10.1021/nl103873a Ivanov, A. P., Instuli, E., McGilvery, C. M., Baldwin, G., McComb, D. W., Albrecht, T., & Edel, J. B. (2011). DNA tunneling detector embedded in a nanopore. Nano Letters, 11(1), 279-285.
The Analyst T Gilboa 140 14 4733 2015 10.1039/C4AN02388A Gilboa, T., & Meller, A. (2015). Optical sensing and analyte manipulation in solid-state nanopores. The Analyst, 140(14), 4733-4747.
Nature PJ Crosland-Taylor 171 4340 37 1953 10.1038/171037b0 Crosland-Taylor, P. J. (1953). A device for counting small particles suspended in a fluid through a tube. Nature, 171(4340), 37-38.
Physics Today M Muthukumar 68 8 40 2015 10.1063/PT.3.2881 Muthukumar, M., Plesa, C., & Dekker, C. (2015). Single-molecule sensing with nanopores. Physics Today, 68(8), 40.
Proceedings of the National Academy of Sciences JJ Kasianowicz 93 24 13770 1996 10.1073/pnas.93.24.13770 Kasianowicz, J. J., Brandin, E., Branton, D., & Deamer, D. W. (1996). Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences, 93(24), 13770-13773.
Science M Faller 303 5661 1189 2004 10.1126/science.1094114 Faller, M., Niederweis, M., & Schulz, G. E. (2004). The structure of a mycobacterial outer-membrane channel. Science, 303(5661), 1189-1192.
TRENDS in Biotechnology M Rhee 25 4 174 2007 10.1016/j.tibtech.2007.02.008 Rhee, M., & Burns, M. A. (2007). Nanopore sequencing technology: Nanopore preparations. TRENDS in Biotechnology, 25(4), 174-181.
Nature Communications K Liu 10 1 1 2019 10.1038/s41467-018-07882-8 Liu, K., Pan, C., Kuhn, A., Nievergelt, A. P., Fantner, G. E., Milenkovic, O., & Radenovic, A. (2019). Detecting topological variations of DNA at single-molecule level. Nature Communications, 10(1), 1-9.
Nature Materials AJ Storm 2 8 537 2003 10.1038/nmat941 Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W., & Dekker, C. (2003). Fabrication of solid-state nanopores with single-nanometre precision. Nature Materials, 2(8), 537-540.
Nature Nanotechnology AR Hall 5 12 874 2010 10.1038/nnano.2010.237 Hall, A. R., Scott, A., Rotem, D., Mehta, K. K., Bayley, H., & Dekker, C. (2010). Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. Nature Nanotechnology, 5(12), 874-877.
Analytical Chemistry L Zhu 92 19 13238 2020 10.1021/acs.analchem.0c02396 Zhu, L., Zhang, Z., & Liu, Q. (2020). Deformation-mediated translocation of DNA origami nanoplates through a narrow solid-state nanopore. Analytical Chemistry, 92(19), 13238-13245.
Nanoscale LJ Steinbock 6 23 14380 2014 10.1039/C4NR05001K Steinbock, L. J., Krishnan, S., Bulushev, R. D., Borgeaud, S., Blokesch, M., Feletti, L., & Radenovic, A. (2014). Probing the size of proteins with glass nanopores. Nanoscale, 6(23), 14380-14387.
Nature Nanotechnology EC Yusko 12 4 360 2017 10.1038/nnano.2016.267 Yusko, E. C., Bruhn, B. R., Eggenberger, O. M., Houghtaling, J., Rollings, R. C., Walsh, N. C., Nandivada, S., Pindrus, M., Hall, A. R., Sept, D., & Li, J. (2017). Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nature Nanotechnology, 12(4), 360-367.
ACS Nano J Houghtaling 13 5 5231 2019 10.1021/acsnano.8b09555 Houghtaling, J., Ying, C., Eggenberger, O. M., Fennouri, A., Nandivada, S., Acharjee, M., Li, J., Hall, A. R., & Mayer, M. (2019). Estimation of shape, volume, and dipole moment of individual proteins freely transiting a synthetic nanopore. ACS Nano, 13(5), 5231-5242.
Nature Nanotechnology R Wei 7 4 257 2012 10.1038/nnano.2012.24 Wei, R., Gatterdam, V., Wieneke, R., Tampé, R., & Rant, U. (2012). Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nature Nanotechnology, 7(4), 257-263.
Physical Review E AJ Storm 71 5 051903 2005 10.1103/PhysRevE.71.051903 Storm, A. J., Chen, J. H., Zandbergen, H. W., & Dekker, C. (2005). Translocation of double-strand DNA through a silicon oxide nanopore. Physical Review E, 71(5), 051903.
Scientific Reports I Yanagi 8 1 1 2018 10.1038/s41598-018-28524-5 Yanagi, I., Hamamura, H., Akahori, R., & Takeda, K. I. (2018). Two-step breakdown of a SiN membrane for nanopore fabrication: Formation of thin portion and penetration. Scientific Reports, 8(1), 1-13.
Scientific Reports I Yanagi 5 1 1 2015 10.1038/srep14656 Yanagi, I., Ishida, T., Fujisaki, K., & Takeda, K. I. (2015). Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process. Scientific Reports, 5(1), 1-13.
ACS Nano P Waduge 11 6 5706 2017 10.1021/acsnano.7b01212 Waduge, P., Hu, R., Bandarkar, P., Yamazaki, H., Cressiot, B., Zhao, Q., Whitford, P. C., & Wanunu, M. (2017). Nanopore-based measurements of protein size, fluctuations, and conformational changes. ACS Nano, 11(6), 5706-5716.
Angewandte Chemie International Edition YL Ying 52 50 13154 2013 10.1002/anie.201303529 Ying, Y. L., Zhang, J., Gao, R., & Long, Y. T. (2013). Nanopore-based sequencing and detection of nucleic acids. Angewandte Chemie International Edition, 52(50), 13154-13161.
Nature Nanotechnology J Feng 10 12 1070 2015 10.1038/nnano.2015.219 Feng, J., Liu, K., Bulushev, R. D., Khlybov, S., Dumcenco, D., Kis, A., & Radenovic, A. (2015). Identification of single nucleotides in MoS2 nanopores. Nature Nanotechnology, 10(12), 1070-1076.
Nature Methods N Rusk 12 1 12 2015 10.1038/nmeth.3244 Rusk, N. (2015). MinION takes center stage. Nature Methods, 12(1), 12-12.
Nature Nanotechnology C Dekker 2 209 2007 10.1038/nnano.2007.27 Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2, 209-215.
ACS Nano K Venta 7 5 4629 2013 10.1021/nn4014388 Venta, K., Shemer, G., Puster, M., Rodriguez-Manzo, J. A., Balan, A., Rosenstein, J. K., Shepard, K., & Drndic, M. (2013). Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores. ACS Nano, 7(5), 4629-4636.
Nature Methods JK Rosenstein 9 5 487 2012 10.1038/nmeth.1932 Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M., & Shepard, K. L. (2012). Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nature Methods, 9(5), 487-492.
10.1021/acs.chemmater.8b02687 Weber, M., Julbe, A., Ayral, A., Miele, P. & Bechelany, M. (2018). Atomic layer deposition for membranes: Basics, challenges, and opportunities. Chemistry of Materials, 30(21), 7368-7390.
Scientific Reports A Balan 5 1 1 2015 10.1038/srep17775 Balan, A., Chien, C. C., Engelke, R., & Drndić, M. (2015). Suspended solid-state membranes on glass chips with sub 1-pF capacitance for biomolecule sensing applications. Scientific Reports, 5(1), 1-8.
Nano Letters P Chen 4 7 1333 2004 10.1021/nl0494001 Chen, P., Mitsui, T., Farmer, D. B., Golovchenko, J., Gordon, R. G., & Branton, D. (2004). Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Letters, 4(7), 1333-1337.
ACS Nano J Larkin 7 11 10121 2013 10.1021/nn404326f Larkin, J., Henley, R., Bell, D. C., Cohen-Karni, T., Rosenstein, J. K., & Wanunu, M. (2013). Slow DNA transport through nanopores in hafnium oxide membranes. ACS Nano, 7(11), 10121-10128.
Advanced Functional Materials S Banerjee 25 6 936 2015 10.1002/adfm.201403719 Banerjee, S., Wilson, J., Shim, J., Shankla, M., Corbin, E. A., Aksimentiev, A., & Bashir, R. (2015). Slowing DNA transport using graphene-DNA interactions. Advanced Functional Materials, 25(6), 936-946.
ACS Nano P Waduge 9 7 7352 2015 10.1021/acsnano.5b02369 Waduge, P., Bilgin, I., Larkin, J., Henley, R. Y., Goodfellow, K., Graham, A. C., Bell, D. C., Vamivakas, N., Kar, S., & Wanunu, M. (2015). Direct and scalable deposition of atomically thin low-noise MoS2 membranes on apertures. ACS Nano, 9(7), 7352-7359.
Advanced Materials S Liu 25 33 4549 2013 10.1002/adma.201301336 Liu, S., Lu, B., Zhao, Q., Li, J., Gao, T., Chen, Y., Zhang, Y., Liu, Z., Fan, Z., & Yang, F. (2013). Boron nitride nanopores: Highly sensitive DNA single-molecule detectors. Advanced Materials, 25(33), 4549-4554.
Scientific Reports Z Zhou 3 1 1 2013 10.1038/srep03287 Zhou, Z., Hu, Y., Wang, H., Xu, Z., Wang, W., Bai, X., Shan, X., & Lu, X. (2013). DNA translocation through hydrophilic nanopore in hexagonal boron nitride. Scientific Reports, 3(1), 1-5.
ACS Nano G Danda 11 2 1937 2017 10.1021/acsnano.6b08028 Danda, G., Masih Das, P., Chou, Y. C., Mlack, J. T., Parkin, W. M., Naylor, C. H., Fujisawa, K., Zhang, T., Fulton, L. B., Terrones, M., & Johnson, A. T. (2017). Monolayer WS2 nanopores for DNA translocation with light-adjustable sizes. ACS Nano, 11(2), 1937-1945.
Nature J Li 412 6843 166 2001 10.1038/35084037 Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M. J., & Golovchenko, J. A. (2001). Ion-beam sculpting at nanometre length scales. Nature, 412(6843), 166-169.
Nature Communications E Rigo 10 1 1 2019 10.1038/s41467-019-10265-2 Rigo, E., Dong, Z., Park, J. H., Kennedy, E., Hokmabadi, M., Almonte-Garcia, L., Ding, L., Aluru, N., & Timp, G. (2019). Measurements of the size and correlations between ions using an electrolytic point contact. Nature Communications, 10(1), 1-13.
PLoS ONE H Kwok 9 3 e92880 2014 10.1371/journal.pone.0092880 Kwok, H., Briggs, K., & Tabard-Cossa, V. (2014). Nanopore fabrication by controlled dielectric breakdown. PLoS ONE, 9(3), e92880.
Scientific Reports I Yanagi 4 1 1 2014 10.1038/srep05000 Yanagi, I., Akahori, R., Hatano, T., & Takeda, K. I. (2014). Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection. Scientific Reports, 4(1), 1-7.
Nature Protocols M Waugh 15 1 122 2020 10.1038/s41596-019-0255-2 Waugh, M., Briggs, K., Gunn, D., Gibeault, M., King, S., Ingram, Q., Jimenez, A. M., Berryman, S., Lomovtsev, D., Andrzejewski, L., & Tabard-Cossa, V. (2020). Solid-state nanopore fabrication by automated controlled breakdown. Nature Protocols, 15(1), 122-143.
Langmuir CC Harrell 22 25 10837 2006 10.1021/la061234k Harrell, C. C., Choi, Y., Horne, L. P., Baker, L. A., Siwy, Z. S., & Martin, C. R. (2006). Resistive-pulse DNA detection with a conical nanopore sensor. Langmuir, 22(25), 10837-10843.
ACS Nano H Yamazaki 12 12 12472 2018 10.1021/acsnano.8b06805 Yamazaki, H., Hu, R., Zhao, Q., & Wanunu, M. (2018). Photothermally assisted thinning of silicon nitride membranes for ultrathin asymmetric nanopores. ACS Nano, 12(12), 12472-12481.
Journal of Nanomaterials G Sriram 2016 1 2016 10.1155/2016/1753574 Sriram, G., Patil, P., Bhat, M. P., Hegde, R. M., Ajeya, K. V., Udachyan, I., Bhavya, M. B., Gatti, M. G., Uthappa, U. T., Neelgund, G. M., & Jung, H. Y. (2016). Current trends in nanoporous anodized alumina platforms for biosensing applications. Journal of Nanomaterials, 2016, 1-14.
Journal of Micromechanics and Microengineering LJ De Vreede 26 3 037001 2016 10.1088/0960-1317/26/3/037001 De Vreede, L. J., Muniz, M. S., van den Berg, A., & Eijkel, J. C. (2016). Nanopore fabrication in silicon oxynitride membranes by heating Au-particles. Journal of Micromechanics and Microengineering, 26(3), 037001.
Nanotechnology T Deng 24 50 505303 2013 10.1088/0957-4484/24/50/505303 Deng, T., Chen, J., Li, M., Wang, Y., Zhao, C., Zhang, Z., & Liu, Z. (2013). Controllable shrinking of inverted-pyramid silicon nanopore arrays by dry-oxygen oxidation. Nanotechnology, 24(50), 505303.
Analytical Chemistry C Wei 69 22 4627 1997 10.1021/ac970551g Wei, C., Bard, A. J., & Feldberg, S. W. (1997). Current rectification at quartz nanopipet electrodes. Analytical Chemistry, 69(22), 4627-4633.
Analytical Chemistry L Sun 91 21 14080 2019 10.1021/acs.analchem.9b03848 Sun, L., Shigyou, K., Ando, T., & Watanabe, S. (2019). Thermally driven approach to fill sub-10-nm pipettes with batch production. Analytical Chemistry, 91(21), 14080-14084.
Nano Letters LJ Steinbock 10 7 2493 2010 10.1021/nl100997s Steinbock, L. J., Otto, O., Chimerel, C., Gornall, J., & Keyser, U. F. (2010). Detecting DNA folding with nanocapillaries. Nano Letters, 10(7), 2493-2497.
Nanoscale Research Letters Z Yuan 13 1 1 2018 10.1186/s11671-018-2463-z Yuan, Z., Wang, C., Yi, X., Ni, Z., Chen, Y., & Li, T. (2018). Solid-state nanopore. Nanoscale Research Letters, 13(1), 1-10.
Journal of the American Chemical Society J Ma 141 10 4264 2019 10.1021/jacs.8b08488 Ma, J., Li, K., Li, Z., Qiu, Y., Si, W., Ge, Y., Sha, J., Liu, L., Xie, X., Yi, H., & Ni, Z. (2019). Drastically reduced ion mobility in a nanopore due to enhanced pairing and collisions between dehydrated ions. Journal of the American Chemical Society, 141(10), 4264-4272.
Scientific Reports I Yanagi 9 1 1 2019 10.1038/s41598-019-49622-y Yanagi, I., Akahori, R., & Takeda, K. I. (2019). Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules. Scientific Reports, 9(1), 1-15.
IEEE Transactions on Nanotechnology T Hayashi 17 4 727 2018 10.1109/TNANO.2018.2840721 Hayashi, T., Arima, K., Yamashita, N., Park, S., Ma, Z., Tabata, O., & Kawai, K. (2018). Nanopore fabrication of two-dimensional materials on SiO2 membranes using he ion microscopy. IEEE Transactions on Nanotechnology, 17(4), 727-730.
Nano Letters OK Zahid 16 3 2033 2016 10.1021/acs.nanolett.6b00001 Zahid, O. K., Wang, F., Ruzicka, J. A., Taylor, E. W., & Hall, A. R. (2016). Sequence-specific recognition of microRNAs and other short nucleic acids with solid-state nanopores. Nano Letters, 16(3), 2033-2039.
Nano Letters RY Henley 16 1 138 2016 10.1021/acs.nanolett.5b03331 Henley, R. Y., Ashcroft, B. A., Farrell, I., Cooperman, B. S., Lindsay, S. M., & Wanunu, M. (2016). Electrophoretic deformation of individual transfer RNA molecules reveals their identity. Nano Letters, 16(1), 138-144.
Nano Letters M Langecker 15 1 783 2015 10.1021/nl504522n Langecker, M., Ivankin, A., Carson, S., Kinney, S. R., Simmel, F. C., & Wanunu, M. (2015). Nanopores suggest a negligible influence of CpG methylation on nucleosome packaging and stability. Nano Letters, 15(1), 783-790.
Nano Letters A Singer 12 3 1722 2012 10.1021/nl300372a Singer, A., Rapireddy, S., Ly, D. H., & Meller, A. (2012). Electronic barcoding of a viral gene at the single-molecule level. Nano Letters, 12(3), 1722-1728.
Nanoscale JS Yu 11 5 2510 2019 10.1039/C8NR09315F Yu, J. S., Hong, S. C., Wu, S., Kim, H. M., Lee, C., Lee, J. S., Lee, J. E., & Kim, K. B. (2019). Differentiation of selectively labeled peptides using solid-state nanopores. Nanoscale, 11(5), 2510-2520.
Nanoscale X Zhao 11 13 6263 2019 10.1039/C8NR10474C Zhao, X., Ma, R., Hu, Y., Chen, X., Dou, R., Liu, K., Cui, C., Liu, H., Li, Q., Pan, D., & Shan, X. (2019). Translocation of tetrahedral DNA nanostructures through a solid-state nanopore. Nanoscale, 11(13), 6263-6269.
Nano Letters AT Carlsen 14 10 5488 2014 10.1021/nl501340d Carlsen, A. T., Zahid, O. K., Ruzicka, J. A., Taylor, E. W., & Hall, A. R. (2014). Selective detection and quantification of modified DNA with solid-state nanopores. Nano Letters, 14(10), 5488-5492.
Nano Letters C Plesa 15 5 3153 2015 10.1021/acs.nanolett.5b00249 Plesa, C., Ruitenberg, J. W., Witteveen, M. J., & Dekker, C. (2015). Detection of individual proteins bound along DNA using solid-state nanopores. Nano Letters, 15(5), 3153-3158.
Scientific Reports A Squires 5 1 1 2015 10.1038/srep11643 Squires, A., Atas, E., & Meller, A. (2015). Nanopore sensing of individual transcription factors bound to DNA. Scientific Reports, 5(1), 1-11.
ACS Nano JS Yu 9 5 5289 2015 10.1021/acsnano.5b00784 Yu, J. S., Lim, M. C., Huynh, D. T. N., Kim, H. J., Kim, H. M., Kim, Y. R., & Kim, K. B. (2015). Identifying the location of a single protein along the DNA strand using solid-state nanopores. ACS Nano, 9(5), 5289-5298.
Nanoscale Research Letters W Asghar 6 1 1 2011 10.1186/1556-276X-6-372 Asghar, W., Ilyas, A., Billo, J. A., & Iqbal, S. M. (2011). Shrinking of solid-state nanopores by direct thermal heating. Nanoscale Research Letters, 6(1), 1-6.
Angewandte Chemie International Edition Q Li 48 43 8010 2009 10.1002/anie.200903143 Li, Q., Xie, S., Liang, Z., Meng, X., Liu, S., Girault, H. H., & Shao, Y. (2009). fast ion-transfer processes at nanoscopic liquid/liquid interfaces. Angewandte Chemie International Edition, 48(43), 8010-8013.
ACS Nano R Hu 12 5 4494 2018 10.1021/acsnano.8b00734 Hu, R., Rodrigues, J. V., Waduge, P., Yamazaki, H., Cressiot, B., Chishti, Y., Makowski, L., Yu, D., Shakhnovich, E., Zhao, Q., & Wanunu, M. (2018). Differential enzyme flexibility probed using solid-state nanopores. ACS Nano, 12(5), 4494-4502.
Electrophoresis A Darvish 40 5 776 2019 10.1002/elps.201800311 Darvish, A., Lee, J. S., Peng, B., Saharia, J., VenkatKalyana Sundaram, R., Goyal, G., Bandara, N., Ahn, C. W., Kim, J., Dutta, P., & Chaiken, I. (2019). Mechanical characterization of HIV-1 with a solid-state nanopore sensor. Electrophoresis, 40(5), 776-783.
Nature Communications A McMullen 5 1 1 2014 10.1038/ncomms5171 McMullen, A., De Haan, H. W., Tang, J. X., & Stein, D. (2014). Stiff filamentous virus translocations through solid-state nanopores. Nature Communications, 5(1), 1-10.
ACS Nano A Oukhaled 5 5 3628 2011 10.1021/nn1034795 Oukhaled, A., Cressiot, B., Bacri, L., Pastoriza-Gallego, M., Betton, J. M., Bourhis, E., Jede, R., Gierak, J., Auvray, L., & Pelta, J. (2011). Dynamics of completely unfolded and native proteins through solid-state nanopores as a function of electric driving force. ACS Nano, 5(5), 3628-3638.
Nature Nanotechnology J Larkin 12 12 1169 2017 10.1038/nnano.2017.176 Larkin, J., Henley, R. Y., Jadhav, V., Korlach, J., & Wanunu, M. (2017). Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing. Nature Nanotechnology, 12(12), 1169-1175.
Advanced Materials BM Venkatesan 21 27 2771 2009 10.1002/adma.200803786 Venkatesan, B. M., Dorvel, B., Yemenicioglu, S., Watkins, N., Petrov, I., & Bashir, R. (2009). Highly sensitive, mechanically stable nanopore sensors for DNA analysis. Advanced Materials, 21(27), 2771-2776.
ACS Nano BM Venkatesan 6 1 441 2012 10.1021/nn203769e Venkatesan, B. M., Estrada, D., Banerjee, S., Jin, X., Dorgan, V. E., Bae, M. H., Aluru, N. R., Pop, E., & Bashir, R. (2012). Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA-protein complexes. ACS Nano, 6(1), 441-450.
Nanoscale KB Park 9 47 18772 2017 10.1039/C7NR05755E Park, K. B., Kim, H. J., Kang, Y. H., Yu, J. S., Chae, H., Lee, K., Kim, H. M., & Kim, K. B. (2017). Highly reliable and low-noise solid-state nanopores with an atomic layer deposited ZnO membrane on a quartz substrate. Nanoscale, 9(47), 18772-18780.
Electrophoresis JS Lee 42 7-8 991 2021 10.1002/elps.202000356 Lee, J. S., Oviedo, J. P., Bandara, Y. M., Peng, X., Xia, L., Wang, Q., Garcia, K., Wang, J., Kim, M. J., & Kim, M. J. (2021). Detection of nucleotides in hydrated ssDNA via 2D h-BN nanopore with ionic-liquid/salt-water interface. Electrophoresis, 42(7-8), 991-1002.
Nature S Garaj 467 7312 190 2010 10.1038/nature09379 Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D., & Golovchenko, J. A. (2010). Graphene as a subnanometre trans-electrode membrane. Nature, 467(7312), 190-193.
Nature Communications GF Schneider 4 2619 2013 10.1038/ncomms3619 Schneider, G. F., Xu, Q., Luik, S., Hage, S., Spoor, J. N., Malladi, S., Zandbergen, H. W., & Dekker, C. (2013). Tailoring the surface chemistry and hydrophobicity of graphene nanopores. Nature Communications, 4, 2619.
Analytical Chemistry CC Harrell 75 24 6861 2003 10.1021/ac034602n Harrell, C. C., Lee, S. B., & Martin, C. R. (2003). Synthetic single-nanopore and nanotube membranes. Analytical Chemistry, 75(24), 6861-6867.
ACS Nano K Liu 8 3 2504 2014 10.1021/nn406102h Liu, K., Feng, J., Kis, A., & Radenovic, A. (2014). Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano, 8(3), 2504-2511.
Nanoscale KB Park 8 10 5755 2016 10.1039/C5NR09085G Park, K. B., Kim, H. J., Kim, H. M., Han, S. A., Lee, K. H., Kim, S. W., & Kim, K. B. (2016). Noise and sensitivity characteristics of solid-state nanopores with a boron nitride 2-D membrane on a pyrex substrate. Nanoscale, 8(10), 5755-5763.
Nanotechnology AS Prabhu 22 42 425302 2011 10.1088/0957-4484/22/42/425302 Prabhu, A. S., Freedman, K. J., Robertson, J. W., Nikolov, Z., Kasianowicz, J. J., & Kim, M. J. (2011). SEM-induced shrinking of solid-state nanopores for single molecule detection. Nanotechnology, 22(42), 425302.
Nano letters AJ Storm 5 7 1193 2005 10.1021/nl048030d Storm, A. J., Storm, C., Chen, J., Zandbergen, H., Joanny, J. F., & Dekker, C. (2005). Fast DNA translocation through a solid-state nanopore. Nano letters, 5(7), 1193-1197.
Nanotechnology G Goyal 27 49 495301 2016 10.1088/0957-4484/27/49/495301 Goyal, G., Lee, Y. B., Darvish, A., Ahn, C. W., & Kim, M. J. (2016). Hydrophilic and size-controlled graphene nanopores for protein detection. Nanotechnology, 27(49), 495301.
ACS Sensors E Beamish 2 12 1814 2017 10.1021/acssensors.7b00628 Beamish, E., Tabard-Cossa, V., & Godin, M. (2017). Identifying structure in short DNA scaffolds using solid-state nanopores. ACS Sensors, 2(12), 1814-1820.
Chemical Communications Y Lin 53 84 11564 2017 10.1039/C7CC06775E Lin, Y., Ying, Y. L., Shi, X., Liu, S. C., & Long, Y. T. (2017). Direct sensing of cancer biomarkers in clinical samples with a designed nanopore. Chemical Communications, 53(84), 11564-11567.
Nanotechnology AT Carlsen 28 8 085304 2017 10.1088/1361-6528/aa564d Carlsen, A. T., Briggs, K., Hall, A. R., & Tabard-Cossa, V. (2017). Solid-state nanopore localization by controlled breakdown of selectively thinned membranes. Nanotechnology, 28(8), 085304.
Scientific Reports T Gilboa 8 1 1 2018 10.1038/s41598-018-28136-z Gilboa, T., Zrehen, A., Girsault, A., & Meller, A. (2018). Optically-monitored nanopore fabrication using a focused laser beam. Scientific Reports, 8(1), 1-10.
Advanced Functional Materials T Gilboa 30 18 1900642 2020 10.1002/adfm.201900642 Gilboa, T., Zvuloni, E., Zrehen, A., Squires, A. H., & Meller, A. (2020). Automated, ultra-fast laser-drilling of nanometer scale pores and nanopore arrays in aqueous solutions. Advanced Functional Materials, 30(18), 1900642.
Small (Weinheim an der Bergstrasse, Germany) K Briggs 10 10 2077 2014 10.1002/smll.201303602 Briggs, K., Kwok, H., & Tabard-Cossa, V. (2014). Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis. Small (Weinheim an der Bergstrasse, Germany), 10(10), 2077-2086.
The Journal of Physical Chemistry C Y Wang 122 21 11516 2018 10.1021/acs.jpcc.8b01472 Wang, Y., Chen, Q., Deng, T., & Liu, Z. (2018). Self-aligned nanopore formed on a SiO2 pyramidal membrane by a multipulse dielectric breakdown method. The Journal of Physical Chemistry C, 122(21), 11516-11523.
ACS Sensors X Zhang 5 8 2317 2020 10.1021/acssensors.0c00883 Zhang, X., van Deursen, P. M., Fu, W., & Schneider, G. F. (2020). Facile and ultraclean graphene-on-glass nanopores by controlled electrochemical etching. ACS Sensors, 5(8), 2317-2325.
Advanced Functional Materials J Kong 29 3 1807555 2019 10.1002/adfm.201807555 Kong, J., Zhu, J., Chen, K., & Keyser, U. F. (2019). Specific biosensing using DNA aptamers and nanopores. Advanced Functional Materials, 29(3), 1807555.
Analytical Chemistry AYY Loh 90 23 14063 2018 10.1021/acs.analchem.8b04357 Loh, A. Y. Y., Burgess, C. H., Tanase, D. A., Ferrari, G., McLachlan, M. A., Cass, A. E. G., & Albrecht, T. (2018). Electric single-molecule hybridization detector for short DNA fragments. Analytical Chemistry, 90(23), 14063-14071.
ACS Sensors NE Weckman 4 8 2065 2019 10.1021/acssensors.9b00686 Weckman, N. E., Ermann, N., Gutierrez, R., Chen, K., Graham, J., Tivony, R., Heron, A., & Keyser, U. F. (2019). Multiplexed DNA identification using site specific dCas9 barcodes and nanopore sensing. ACS Sensors, 4(8), 2065-2072.
Nature Communications S Cai 10 1 1 2019 10.1038/s41467-019-09476-4 Cai, S., Sze, J. Y., Ivanov, A. P., & Edel, J. B. (2019). Small molecule electro-optical binding assay using nanopores. Nature Communications, 10(1), 1-9.
PLoS ONE JA Bafna 11 6 e0157399 2016 10.1371/journal.pone.0157399 Bafna, J. A., & Soni, G. V. (2016). Fabrication of low noise borosilicate glass nanopores for single molecule sensing. PLoS ONE, 11(6), e0157399.
Analytical Chemistry B Zhang 76 21 6229 2004 10.1021/ac049288r Zhang, B., Zhang, Y., & White, H. S. (2004). The nanopore electrode. Analytical Chemistry, 76(21), 6229-6238.
ACS Nano W Li 7 5 4129 2013 10.1021/nn4004567 Li, W., Bell, N. A., Hernández-Ainsa, S., Thacker, V. V., Thackray, A. M., Bujdoso, R., & Keyser, U. F. (2013). Single protein molecule detection by glass nanopores. ACS Nano, 7(5), 4129-4134.
Nature Communications JY Sze 8 1 1 2017 10.1038/s41467-017-01584-3 Sze, J. Y., Ivanov, A. P., Cass, A. E., & Edel, J. B. (2017). Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers. Nature Communications, 8(1), 1-10.
Analytical Chemistry M Kubánková 91 10 6880 2019 10.1021/acs.analchem.9b01221 Kubánková, M., Lin, X., Albrecht, T., Edel, J. B., & Kuimova, M. K. (2019). Rapid fragmentation during seeded lysozyme aggregation revealed at the single molecule level. Analytical Chemistry, 91(10), 6880-6886.
Nature Nanotechnology NA Bell 11 7 645 2016 10.1038/nnano.2016.50 Bell, N. A., & Keyser, U. F. (2016). Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. Nature Nanotechnology, 11(7), 645-651.
Mineralogical Magazine P Henderson 42 322 306 1978 10.1180/minmag.1978.042.322.40 Henderson, P. (1978). Fleischer, (PB) Price, and (RM) Walker. Nuclear tracks in solids: Principles and applications. Berkeley and London (Univ. California Press), 1975. xxii+ 605 pp., 205 figs., I pl. Price. Mineralogical Magazine, 42(322), 306-307.
Applied Physics A Z Siwy 76 5 781 2003 10.1007/s00339-002-1982-7 Siwy, Z., Dobrev, D., Neumann, R., Trautmann, C., & Voss, K. (2003). Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal. Applied Physics A, 76(5), 781-785.
Nano Letters MY Wu 9 479 2009 10.1021/nl803613s Wu, M. Y., Smeets, R. M., Zandbergen, M., Ziese, U., Krapf, D., Batson, P. E., Dekker, N. H., Dekker, C., & Zandbergen, H. W. (2009). Control of shape and material composition of solid-state nanopores. Nano Letters, 9, 479-484.
Nanotechnology M Van den Hout 21 11 115304 2010 10.1088/0957-4484/21/11/115304 Van den Hout, M., Hall, A. R., Wu, M. Y., Zandbergen, H. W., Dekker, C., & Dekker, N. H. (2010). Controlling nanopore size, shape and stability. Nanotechnology, 21(11), 115304.
Applied Physics Letters D Emmrich 108 16 163103 2016 10.1063/1.4947277 Emmrich, D., Beyer, A., Nadzeyka, A., Bauerdick, S., Meyer, J. C., Kotakoski, J., & Gölzhäuser, A. (2016). Nanopore fabrication and characterization by helium ion microscopy. Applied Physics Letters, 108(16), 163103.
Microelectronic Engineering MY Wu 84 5-8 779 2007 Wu, M. Y., Smeets, R. M., Zandbergen, M., Ziese, U., Krapf, D., Batson, P. E., Dekker, N. H., Dekker, C., & Zandbergen, H. W. (2007). Sub-5 nm FIB direct patterning of nanodevices. Microelectronic Engineering, 84(5-8), 779-783.
Nanotechnology CJ Lo 17 13 3264 2006 10.1088/0957-4484/17/13/031 Lo, C. J., Aref, T., & Bezryadin, A. (2006). Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology, 17(13), 3264.
Sensors F Sawafta 14 5 8150 2014 10.3390/s140508150 Sawafta, F., Carlsen, A. T., & Hall, A. R. (2014). Membrane thickness dependence of nanopore formation with a focused helium ion beam. Sensors, 14(5), 8150-8161.
ACS Nano YC Chou 14 6 6715 2020 10.1021/acsnano.9b09964 Chou, Y. C., Masih Das, P., Monos, D. S., & Drndić, M. (2020). Lifetime and stability of silicon nitride nanopores and nanopore arrays for ionic measurements. ACS Nano, 14(6), 6715-6728.
Electrochimica Acta L Zaraska 104 549 2013 10.1016/j.electacta.2012.12.059 Zaraska, L., Czopik, N., Bobruk, M., Sulka, G. D., Mech, J., & Jaskuła, M. (2013). Synthesis of nanoporous tin oxide layers by electrochemical anodization. Electrochimica Acta, 104, 549-557.
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms PY Apel 184 3 337 2001 10.1016/S0168-583X(01)00722-4 Apel, P. Y., Korchev, Y. E., Siwy, Z., Spohr, R., & Yoshida, M. (2001). Diode-like single-ion track membrane prepared by electro-stopping. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(3), 337-346.
Physical Review Letters Z Siwy 89 19 198103 2002 10.1103/PhysRevLett.89.198103 Siwy, Z., & Fuliński, A. (2002). Fabrication of a synthetic nanopore ion pump. Physical Review Letters, 89(19), 198103.
Science H Masuda 268 5216 1466 1995 10.1126/science.268.5216.1466 Masuda, H., & Fukuda, K. (1995). Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 268(5216), 1466-1468.
Chemical Reviews W Lee 114 15 7487 2014 10.1021/cr500002z Lee, W., & Park, S. J. (2014). Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chemical Reviews, 114(15), 7487-7556.
Langmuir B Pandey 28 38 13705 2012 10.1021/la302672a Pandey, B., Thapa, P. S., Higgins, D. A., & Ito, T. (2012). Formation of self-organized nanoporous anodic oxide from metallic gallium. Langmuir, 28(38), 13705-13711.
Electrochimica Acta GD Sulka 104 526 2013 10.1016/j.electacta.2012.12.121 Sulka, G. D., Kapusta-Kołodziej, J., Brzózka, A., & Jaskuła, M. (2013). Anodic growth of TiO2 nanopore arrays at various temperatures. Electrochimica Acta, 104, 526-535.
Chemistry of Materials S Berger 20 10 3245 2008 10.1021/cm8004024 Berger, S., Tsuchiya, H., & Schmuki, P. (2008). Transition from nanopores to nanotubes: Self-ordered anodic oxide structures on titanium-aluminides. Chemistry of Materials, 20(10), 3245-3247.
Nano Letters SW Nam 9 5 2044 2009 10.1021/nl900309s Nam, S. W., Rooks, M. J., Kim, K. B., & Rossnagel, S. M. (2009). Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Letters, 9(5), 2044-2048.
Nature Nanotechnology S Zeng 14 11 1056 2019 10.1038/s41565-019-0549-0 Zeng, S., Wen, C., Solomon, P., Zhang, S. L., & Zhang, Z. (2019). Rectification of protein translocation in truncated pyramidal nanopores. Nature Nanotechnology, 14(11), 1056-1062.
Nanotechnology MJ Kim 18 20 205302 2007 10.1088/0957-4484/18/20/205302 Kim, M. J., McNally, B., Murata, K., & Meller, A. (2007). Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology, 18(20), 205302.
ACS Nano R Wang 12 11 11648 2018 10.1021/acsnano.8b07055 Wang, R., Gilboa, T., Song, J., Huttner, D., Grinstaff, M. W., & Meller, A. (2018). Single-molecule discrimination of labeled DNAs and polypeptides using photoluminescent-free TiO2 nanopores. ACS Nano, 12(11), 11648-11656.
ACS Nano M Mojtabavi 13 3 3042 2019 10.1021/acsnano.8b08017 Mojtabavi, M., VahidMohammadi, A., Liang, W., Beidaghi, M., & Wanunu, M. (2019). Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. ACS Nano, 13(3), 3042-3053.
Nano Letters K Chen 20 5 3754 2020 10.1021/acs.nanolett.0c00755 Chen, K., Zhu, J., Boskovic, F., & Keyser, U. F. (2020). Nanopore-based DNA hard drives for rewritable and secure data storage. Nano Letters, 20(5), 3754-3760.
ACS Nano JA Rodríguez-Manzo 9 6 6555 2015 10.1021/acsnano.5b02531 Rodríguez-Manzo, J. A., Puster, M., Nicolaï, A., Meunier, V., & Drndic, M. (2015). DNA translocation in nanometer thick silicon nanopores. ACS Nano, 9(6), 6555-6564.
Nature Nanotechnology F Traversi 8 12 939 2013 10.1038/nnano.2013.240 Traversi, F., Raillon, C., Benameur, S. M., Liu, K., Khlybov, S., Tosun, M., Krasnozhon, D., Kis, A., & Radenovic, A. (2013). Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nature Nanotechnology, 8(12), 939-945.
Nano Letters GF Schneider 10 8 3163 2010 10.1021/nl102069z Schneider, G. F., Kowalczyk, S. W., Calado, V. E., Pandraud, G., Zandbergen, H. W., Vandersypen, L. M., & Dekker, C. (2010). DNA translocation through graphene nanopores. Nano Letters, 10(8), 3163-3167.
Science AK Geim 324 5934 1530 2009 10.1126/science.1158877 Geim, A. K. (2009). Graphene: Status and prospects. Science, 324(5934), 1530-1534.
Nano Letters CA Merchant 10 8 2915 2010 10.1021/nl101046t Merchant, C. A., Healy, K., Wanunu, M., Ray, V., Peterman, N., Bartel, J., Fischbein, M. D., Venta, K., Luo, Z., Johnson, A. C., & Drndic, M. (2010). DNA translocation through graphene nanopores. Nano Letters, 10(8), 2915-2921.
Nanoscale L Yuan 7 16 7402 2015 10.1039/C5NR00383K Yuan, L., & Huang, L. (2015). Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale, 7(16), 7402-7408.
ACS Nano SJ Heerema 12 3 2623 2018 10.1021/acsnano.7b08635 Heerema, S. J., Vicarelli, L., Pud, S., Schouten, R. N., Zandbergen, H. W., & Dekker, C. (2018). Probing DNA translocations with inplane current signals in a graphene nanoribbon with a nanopore. ACS Nano, 12(3), 2623-2633.
Biophysical Journal M Wanunu 95 10 4716 2008 10.1529/biophysj.108.140475 Wanunu, M., Sutin, J., McNally, B., Chow, A., & Meller, A. (2008). DNA translocation governed by interactions with solid-state nanopores. Biophysical Journal, 95(10), 4716-4725.
RSC Advances L Liang 3 7 2445 2013 10.1039/c2ra22109h Liang, L., Cui, P., Wang, Q., Wu, T., Ågren, H., & Tu, Y. (2013). Theoretical study on key factors in DNA sequencing with graphene nanopores. RSC Advances, 3(7), 2445-2453.
Soft Matter B Luan 6 2 243 2010 10.1039/B917973A Luan, B., & Aksimentiev, A. (2010). Electric and electrophoretic inversion of the DNA charge in multivalent electrolytes. Soft Matter, 6(2), 243-246.
ACS Nano Y He 5 7 5509 2011 10.1021/nn201883b He, Y., Tsutsui, M., Fan, C., Taniguchi, M., & Kawai, T. (2011). Controlling DNA translocation through gate modulation of nanopore wall surface charges. ACS Nano, 5(7), 5509-5518.
Nature Nanotechnology M Wanunu 5 2 160 2010 10.1038/nnano.2009.379 Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y., & Meller, A. (2010). Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nature Nanotechnology, 5(2), 160-165.
Scientific Reports M Tsutsui 2 1 1 2012 10.1038/srep00394 Tsutsui, M., He, Y., Furuhashi, M., Rahong, S., Taniguchi, M., & Kawai, T. (2012). Transverse electric field dragging of DNA in a nanochannel. Scientific Reports, 2(1), 1-7.
Nano Letters SW Kowalczyk 12 2 1038 2012 10.1021/nl204273h Kowalczyk, S. W., Wells, D. B., Aksimentiev, A., & Dekker, C. (2012). Slowing down DNA translocation through a nanopore in lithium chloride. Nano Letters, 12(2), 1038-1044.
ACS Nano BN Anderson 7 2 1408 2013 10.1021/nn3051677 Anderson, B. N., Muthukumar, M., & Meller, A. (2013). pH tuning of DNA translocation time through organically functionalized nanopores. ACS Nano, 7(2), 1408-1414.
Proceedings of the National Academy of Sciences IC Yeh 101 33 12177 2004 10.1073/pnas.0402699101 Yeh, I. C., & Hummer, G. (2004). Nucleic acid transport through carbon nanotube membranes. Proceedings of the National Academy of Sciences, 101(33), 12177-12182.
Nanoscale B Luan 4 4 1068 2012 10.1039/C1NR11201E Luan, B., Stolovitzky, G., & Martyna, G. (2012). Slowing and controlling the translocation of DNA in a solid-state nanopore. Nanoscale, 4(4), 1068-1077.
PLoS ONE S Akca 6 4 e18442 2011 10.1371/journal.pone.0018442 Akca, S., Foroughi, A., Frochtzwajg, D., & Postma, H. W. C. (2011). Competing interactions in DNA assembly on graphene. PLoS ONE, 6(4), e18442.
Nanoscale H Yoshida 8 43 18270 2016 10.1039/C6NR06575A Yoshida, H., Goto, Y., Akahori, R., Tada, Y., Terada, S., Komura, M., & Iyoda, T. (2016). Slowing the translocation of single-stranded DNA by using nano-cylindrical passage self-assembled by amphiphilic block copolymers. Nanoscale, 8(43), 18270-18276.
Scientific Reports Y Goto 5 1 1 2015 10.1038/srep16640 Goto, Y., Haga, T., Yanagi, I., Yokoi, T., & Takeda, K. I. (2015). Deceleration of single-stranded DNA passing through a nanopore using a nanometre-sized bead structure. Scientific Reports, 5(1), 1-7.
Journal of the American Chemical Society AH Squires 135 44 16304 2013 10.1021/ja408685x Squires, A. H., Hersey, J. S., Grinstaff, M. W., & Meller, A. (2013). A nanopore-nanofiber mesh biosensor to control DNA translocation. Journal of the American Chemical Society, 135(44), 16304-16307.
Nanoscale Z Tang 7 31 13207 2015 10.1039/C5NR03084F Tang, Z., Liang, Z., Lu, B., Li, J., Hu, R., Zhao, Q., & Yu, D. (2015). Gel mesh as “brake” to slow down DNA translocation through solid-state nanopores. Nanoscale, 7(31), 13207-13214.
Nano Letters C Plesa 13 2 658 2013 10.1021/nl3042678 Plesa, C., Kowalczyk, S. W., Zinsmeester, R., Grosberg, A. Y., Rabin, Y., & Dekker, C. (2013). Fast translocation of proteins through solid state nanopores. Nano Letters, 13(2), 658-663.
Zeitschrift für Physikalische Chemie MV Smoluchowski 92 129 1917 Smoluchowski, M. V. (1917). Engineering biological structures of prescribed shape using self-assembled multicellular systems. Zeitschrift für Physikalische Chemie, 92, 129.
Analytical Chemistry D Pedone 81 23 9689 2009 10.1021/ac901877z Pedone, D., Firnkes, M., & Rant, U. (2009). Data analysis of translocation events in nanopore experiments. Analytical Chemistry, 81(23), 9689-9694.
Biophysical Journal J Larkin 106 3 696 2014 10.1016/j.bpj.2013.12.025 Larkin, J., Henley, R. Y., Muthukumar, M., Rosenstein, J. K., & Wanunu, M. (2014). High-bandwidth protein analysis using solid-state nanopores. Biophysical Journal, 106(3), 696-704.
ACS Applied Materials and Interfaces A Asandei 8 20 13166 2016 10.1021/acsami.6b03697 Asandei, A., Schiopu, I., Chinappi, M., Seo, C. H., Park, Y., & Luchian, T. (2016). Electroosmotic trap against the electrophoretic force near a protein nanopore reveals peptide dynamics during capture and translocation. ACS Applied Materials and Interfaces, 8(20), 13166-13179.
The Journal of Chemical Physics M Muthukumar 141 8 081104 2014 10.1063/1.4894401 Muthukumar, M. (2014). Communication: Charge, diffusion, and mobility of proteins through nanopores. The Journal of Chemical Physics, 141(8), 081104.
Nanotechnology A Kumar 24 49 495503 2013 10.1088/0957-4484/24/49/495503 Kumar, A., Park, K. B., Kim, H. M., & Kim, K. B. (2013). Noise and its reduction in graphene based nanopore devices. Nanotechnology, 24(49), 495503.
ACS Nano A Fragasso 14 2 1338 2020 10.1021/acsnano.9b09353 Fragasso, A., Schmid, S., & Dekker, C. (2020). Comparing current noise in biological and solid-state nanopores. ACS Nano, 14(2), 1338-1349.
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena PS Waggoner 29 3 032206 2011 10.1116/1.3585536 Waggoner, P. S., Kuan, A. T., Polonsky, S., Peng, H., & Rossnagel, S. M. (2011). Increasing the speed of solid-state nanopores. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 29(3), 032206.
ACS Nano JD Uram 2 5 857 2008 10.1021/nn700322m Uram, J. D., Ke, K., & Mayer, M. (2008). Noise and bandwidth of current recordings from submicrometer pores and nanopores. ACS Nano, 2(5), 857-872.
10.1103/PhysRevLett.97.088101 Smeets, R. M., Keyser, U. F., Wu, M. Y., Dekker, N. H., & Dekker, C. (2006). Nanobubbles in solid-state nanopores. Physical Review Letters, 97(8), 088101.
10.1039/D1CP00253H Marion, S., Macha, M., Davis, S. J., Chernev, A., & Radenovic, A. (2021). Wetting of nanopores probed with pressure. Physical Chemistry Chemical Physics, 23(8), 4975-4987.
Nano Letters S Gravelle 19 10 7265 2019 10.1021/acs.nanolett.9b02858 Gravelle, S., Netz, R. R., & Bocquet, L. (2019). Adsorption kinetics in open nanopores as a source of low-frequency noise. Nano Letters, 19(10), 7265-7272.
Nanotechnology E Beamish 23 40 405301 2012 10.1088/0957-4484/23/40/405301 Beamish, E., Kwok, H., Tabard-Cossa, V., & Godin, M. (2012). Precise control of the size and noise of solid-state nanopores using high electric fields. Nanotechnology, 23(40), 405301.
ACS Nano LJ Steinbock 7 12 11255 2013 10.1021/nn405029j Steinbock, L. J., Bulushev, R. D., Krishnan, S., Raillon, C., & Radenovic, A. (2013). DNA translocation through low-noise glass nanopores. ACS Nano, 7(12), 11255-11262.
Nano Letters A Balan 14 12 7215 2014 10.1021/nl504345y Balan, A., Machielse, B., Niedzwiecki, D., Lin, J., Ong, P., Engelke, R., Shepard, K. L., & Drndić, M. (2014). Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths. Nano Letters, 14(12), 7215-7220.
10.1088/1361-6528/ab2d35 Fragasso, A., Pud, S. & Dekker, C. (2019). 1/f noise in solid-state nanopores is governed by access and surface regions. Nanotechnology, 30(39), 395202.
Review of Scientific Instruments OA Saleh 72 12 4449 2001 10.1063/1.1419224 Saleh, O. A., & Sohn, L. L. (2001). Quantitative sensing of nanoscale colloids using a microchip coulter counter. Review of Scientific Instruments, 72(12), 4449-4451.
Chemical Society Reviews N Varongchayakul 47 23 8512 2018 10.1039/C8CS00106E Varongchayakul, N., Song, J., Meller, A., & Grinstaff, M. W. (2018). Single-molecule protein sensing in a nanopore: A tutorial. Chemical Society Reviews, 47(23), 8512-8524.
Proceedings of the National Academy of Sciences RM Smeets 105 2 417 2008 10.1073/pnas.0705349105 Smeets, R. M., Keyser, U. F., Dekker, N. H., & Dekker, C. (2008). Noise in solid-state nanopores. Proceedings of the National Academy of Sciences, 105(2), 417-421.
Cell LF Liu 19 3 697 1980 10.1016/S0092-8674(80)80046-8 Liu, L. F., Liu, C. C., & Alberts, B. M. (1980). Type II DNA topoisomerases: Enzymes that can unknot a topologically knotted DNA molecule via a reversible double-strand break. Cell, 19(3), 697-707.
Nature Nanotechnology C Plesa 11 12 1093 2016 10.1038/nnano.2016.153 Plesa, C., Verschueren, D., Pud, S., Van Der Torre, J., Ruitenberg, J. W., Witteveen, M. J., Jonsson, M. P., Grosberg, A. Y., Rabin, Y., & Dekker, C. (2016). Direct observation of DNA knots using a solid-state nanopore. Nature Nanotechnology, 11(12), 1093-1097.
Nature Communications RK Sharma 10 1 1 2019 10.1038/s41467-018-07882-8 Sharma, R. K., Agrawal, I., Dai, L., Doyle, P. S., & Garaj, S. (2019). Complex DNA knots detected with a nanopore sensor. Nature Communications, 10(1), 1-9.
ACS Nano J Shim 9 1 290 2015 10.1021/nn5045596 Shim, J., Kim, Y., Humphreys, G. I., Nardulli, A. M., Kosari, F., Vasmatzis, G., Taylor, W. R., Ahlquist, D. A., Myong, S., & Bashir, R. (2015). Nanopore-based assay for detection of methylation in double-stranded DNA fragments. ACS Nano, 9(1), 290-300.
Analytical Chemistry M Charron 91 19 12228 2019 10.1021/acs.analchem.9b01900 Charron, M., Briggs, K., King, S., Waugh, M., & Tabard-Cossa, V. (2019). Precise DNA concentration measurements with nanopores by controlled counting. Analytical Chemistry, 91(19), 12228-12237.
Journal of the American Chemical Society NA Bell 137 5 2035 2015 10.1021/ja512521w Bell, N. A., & Keyser, U. F. (2015). Specific protein detection using designed DNA carriers and nanopores. Journal of the American Chemical Society, 137(5), 2035-2041.
10.1063/1.2180868 Han, A., Schürmann, G., Mondin, G., Bitterli, R.A., Hegelbach, N.G., de Rooij, N.F. & Staufer, U. (2006). Sensing protein molecules using nanofabricated pores. Applied Physics Letters, 88(9), 093901.
Journal of the American Chemical Society DS Talaga 131 26 9287 2009 10.1021/ja901088b Talaga, D. S., & Li, J. (2009). Single-molecule protein unfolding in solid state nanopores. Journal of the American Chemical Society, 131(26), 9287-9297.
Nano Letters M Firnkes 10 6 2162 2010 10.1021/nl100861c Firnkes, M., Pedone, D., Knezevic, J., Doblinger, M., & Rant, U. (2010). Electrically facilitated translocations of proteins through silicon nitride nanopores: Conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. Nano Letters, 10(6), 2162-2167.
ACS Nano J Saharia 13 4 4246 2019 10.1021/acsnano.8b09293 Saharia, J., Bandara, Y. N. D., Goyal, G., Lee, J. S., Karawdeniya, B. I., & Kim, M. J. (2019). Molecular-level profiling of human serum transferrin protein through assessment of nanopore-based electrical and chemical responsiveness. ACS Nano, 13(4), 4246-4254.
ACS Nano EC Yusko 6 7 5909 2012 10.1021/nn300542q Yusko, E. C., Prangkio, P., Sept, D., Rollings, R. C., Li, J., & Mayer, M. (2012). Single-particle characterization of Aβ oligomers in solution. ACS Nano, 6(7), 5909-5919.
ACS Sensors H Kaur 4 1 100 2018 10.1021/acssensors.8b00976 Kaur, H., Nandivada, S., Acharjee, M. C., McNabb, D. S., & Li, J. (2018). Estimating RNA polymerase protein binding sites on λ DNA using solid-state nanopores. ACS Sensors, 4(1), 100-109.
Nano Letters C Raillon 12 3 1157 2012 10.1021/nl3002827 Raillon, C., Cousin, P., Traversi, F., Garcia-Cordero, E., Hernandez, N., & Radenovic, A. (2012). Nanopore detection of single molecule RNAP-DNA transcription complex. Nano Letters, 12(3), 1157-1164.
Nano Letters J Kong 16 6 3557 2016 10.1021/acs.nanolett.6b00627 Kong, J., Bell, N. A., & Keyser, U. F. (2016). Quantifying nanomolar protein concentrations using designed DNA carriers and solid-state nanopores. Nano Letters, 16(6), 3557-3562.
Small (Weinheim an der Bergstrasse, Germany) JD Uram 2 8-9 967 2006 10.1002/smll.200600006 Uram, J. D., Ke, K., Hunt, A. J., & Mayer, M. (2006). Submicrometer pore-based characterization and quantification of antibody-virus interactions. Small (Weinheim an der Bergstrasse, Germany), 2(8-9), 967-972.
Small (Weinheim an der Bergstrasse, Germany) KJ Freedman 9 5 750 2013 10.1002/smll.201201423 Freedman, K. J., Bastian, A. R., Chaiken, I., & Kim, M. J. (2013). Solid-state nanopore detection of protein complexes: Applications in healthcare and protein kinetics. Small (Weinheim an der Bergstrasse, Germany), 9(5), 750-759.
Journal of the American Chemical Society K Zhou 133 6 1618 2011 10.1021/ja108228x Zhou, K., Li, L., Tan, Z., Zlotnick, A., & Jacobson, S. C. (2011). Characterization of hepatitis B virus capsids by resistive-pulse sensing. Journal of the American Chemical Society, 133(6), 1618-1621.
Nanoscale M Tsutsui 11 43 20475 2019 10.1039/C9NR07039G Tsutsui, M., Yamazaki, T., Tatematsu, K., Yokota, K., Esaki, Y., Kubo, Y., Deguchi, H., Arima, A., Kuroda, S. I., & Kawai, T. (2019). High-throughput single nanoparticle detection using a feed-through channel-integrated nanopore. Nanoscale, 11(43), 20475-20484.
Scientific Reports A Arima 8 1 1 2018 10.1038/s41598-018-34665-4 Arima, A., Tsutsui, M., Harlisa, I. H., Yoshida, T., Tanaka, M., Yokota, K., Tonomura, W., Taniguchi, M., Okochi, M., Washio, T., & Kawai, T. (2018). Selective detections of single-viruses using solid-state nanopores. Scientific Reports, 8(1), 1-7.
ACS Sensors X Shi 1 9 1086 2016 10.1021/acssensors.6b00408 Shi, X., Gao, R., Ying, Y. L., Si, W., Chen, Y. F., & Long, Y. T. (2016). A scattering nanopore for single nanoentity sensing. ACS Sensors, 1(9), 1086-1090.
Nano Letters X Shi 18 12 8003 2018 10.1021/acs.nanolett.8b04146 Shi, X., Verschueren, D. V., & Dekker, C. (2018). Active delivery of single DNA molecules into a plasmonic nanopore for label-free optical sensing. Nano Letters, 18(12), 8003-8010.
Nano Letters V Jadhav 19 2 921 2018 10.1021/acs.nanolett.8b04170 Jadhav, V., Hoogerheide, D. P., Korlach, J., & Wanunu, M. (2018). Porous Zero-Mode Waveguides for Picogram-Level DNA Capture. Nano Letters, 19(2), 921-929.
Nano Letters D Garoli 19 11 7553 2019 10.1021/acs.nanolett.9b02759 Garoli, D., Yamazaki, H., Maccaferri, N., & Wanunu, M. (2019). Plasmonic nanopores for single-molecule detection and manipulation: Toward sequencing applications. Nano Letters, 19(11), 7553-7562.
Nature Nanotechnology T Ohshiro 9 10 835 2014 10.1038/nnano.2014.193 Ohshiro, T., Tsutsui, M., Yokota, K., Furuhashi, M., Taniguchi, M., & Kawai, T. (2014). Detection of post-translational modifications in single peptides using electron tunnelling currents. Nature Nanotechnology, 9(10), 835-840.
Nanotechnology V Dimitrov 21 6 065502 2010 10.1088/0957-4484/21/6/065502 Dimitrov, V., Mirsaidov, U., Wang, D., Sorsch, T., Mansfield, W., Miner, J., Klemens, F., Cirelli, R., Yemenicioglu, S., & Timp, G. (2010). Nanopores in solid-state membranes engineered for single molecule detection. Nanotechnology, 21(6), 065502.
Nanotechnology V Tabard-Cossa 18 30 305505 2007 10.1088/0957-4484/18/30/305505 Tabard-Cossa, V., Trivedi, D., Wiggin, M., Jetha, N. N., & Marziali, A. (2007). Noise analysis and reduction in solid-state nanopores. Nanotechnology, 18(30), 305505.
Advanced Materials K Lee 30 42 1704680 2018 10.1002/adma.201704680 Lee, K., Park, K. B., Kim, H. J., Yu, J. S., Chae, H., Kim, H. M., & Kim, K. B. (2018). Recent progress in solid-state nanopores. Advanced Materials, 30(42), 1704680.
Nanotechnology RMM Smeets 20 9 095501 2009 10.1088/0957-4484/20/9/095501 Smeets, R. M. M., Dekker, N. H., & Dekker, C. (2009). Low-frequency noise in solid-state nanopores. Nanotechnology, 20(9), 095501.
1993 The Axon guide for electrophysiology and biophysics: Laboratory techniques Sherman-Gold, R. (Ed.). (1993). The Axon guide for electrophysiology and biophysics: Laboratory techniques. Axon Instruments.
Nanotechnology SJ Heerema 26 7 074001 2015 10.1088/0957-4484/26/7/074001 Heerema, S. J., Schneider, G. F., Rozemuller, M., Vicarelli, L., Zandbergen, H. W., & Dekker, C. (2015). 1/f noise in graphene nanopores. Nanotechnology, 26(7), 074001.
Nano Letters H Chang 4 8 1551 2004 10.1021/nl049267c Chang, H., Kosari, F., Andreadakis, G., Alam, M. A., Vasmatzis, G., & Bashir, R. (2004). DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels. Nano Letters, 4(8), 1551-1556.
Nano Letters RM Smeets 6 1 89 2006 10.1021/nl052107w Smeets, R. M., Keyser, U. F., Krapf, D., Wu, M. Y., Dekker, N. H., & Dekker, C. (2006). Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Letters, 6(1), 89-95.
Frontiers in Microbiology L Yang 7 1500 2016 10.3389/fmicb.2016.01500 Yang, L., & Yamamoto, T. (2016). Quantification of virus particles using nanopore-based resistive-pulse sensing techniques. Frontiers in Microbiology, 7, 1500.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.