$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Adhesive Antimicrobial Peptides Containing 3,4-Dihydroxy-L-Phenylalanine Residues for Direct One-Step Surface Coating 원문보기

International journal of molecular sciences, v.22 no.21, 2021년, pp.11915 -   

Hwang, Young Eun (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea) ,  Im, Seonghun (s0ag@kaist.ac.kr (Y.E.H.)) ,  Kim, Hyun (bcho@kaist.ac.kr (B.-K.C.)) ,  Sohn, Jung-Hoon (Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea) ,  Cho, Byung-Kwan (lsh01573@gmail.com (S.I.)) ,  Cho, Ju Hyun (sohn4090@kribb.re.kr (J.-H.S.)) ,  Sung, Bong Hyun (Division of Applied Life Science (BK21Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea) ,  Kim, Sun Chang (hyun.kim@gnu.ac.kr (H.K.))

Abstract AI-Helper 아이콘AI-Helper

Bacterial colonization and transmission via surfaces increase the risk of infection. In this study, we design and employ novel adhesive antimicrobial peptides to prevent bacterial contamination of surfaces. Repeats of 3,4-dihydroxy-L-phenylalanine (DOPA) were added to the C-terminus of NKC, a potent...

Keyword

참고문헌 (41)

  1. 1. Hancock R.E.W. Sahl H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies Nat. Biotechnol. 2006 24 1551 1557 10.1038/nbt1267 17160061 

  2. 2. Lai Y. Gallo R.L. AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense Trends Immunol. 2009 30 131 141 10.1016/j.it.2008.12.003 19217824 

  3. 3. Glukhov E. Stark M. Burrows L.L. Deber C.M. Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes J. Biol. Chem. 2005 280 33960 33967 10.1074/jbc.M507042200 16043484 

  4. 4. Yu K. Lo J.C. Yan M. Yang X. Brooks D.E. Hancock R.E. Lange D. Kizhakkedathu J.N. Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model Biomaterials 2017 116 69 81 10.1016/j.biomaterials.2016.11.047 27914268 

  5. 5. Song B. Zhang E. Han X. Zhu H. Shi Y. Cao Z. Engineering and Application Perspectives on Designing an Antimicrobial Surface ACS Appl. Mater. Interfaces 2020 12 21330 21341 10.1021/acsami.9b19992 32011846 

  6. 6. Konai M.M. Bhattacharjee B. Ghosh S. Haldar J. Recent Progress in Polymer Research to Tackle Infections and Antimicrobial Resistance Biomacromolecules 2018 19 1888 1917 10.1021/acs.biomac.8b00458 29718664 

  7. 7. Vreuls C. Zocchi G. Garitte G. Archambeau C. Martial J. Van de Weerdt C. Biomolecules in multilayer film for antimicrobial and easy-cleaning stainless steel surface applications Biofouling 2010 26 645 656 10.1080/08927014.2010.506678 20645194 

  8. 8. Shi J. Liu Y. Wang Y. Zhang J. Zhao S.F. Yang G.L. Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium Sci. Rep. 2015 5 16336 10.1038/srep16336 26548760 

  9. 9. Saha A. Nir S. Reches M. Amphiphilic Peptide with Dual Functionality Resists Biofouling Langmuir 2020 36 4201 4206 10.1021/acs.langmuir.9b03997 32192338 

  10. 10. Parreira P. Monteiro C. Graca V. Gomes J. Maia S. Gomes P. Goncalves I.C. Martins M.C.L. Surface Grafted MSI-78A Antimicrobial Peptide has High Potential for Gastric Infection Management Sci. Rep. 2019 9 18212 10.1038/s41598-019-53918-4 31796755 

  11. 11. He J.C. Chen J.J. Hu G.S. Wang L. Zheng J. Zhan J.Z. Zhu Y.C. Zhong C.T. Shi X.T. Liu S. Immobilization of an antimicrobial peptide on silicon surface with stable activity by click chemistry J. Mater. Chem. B 2018 6 68 74 10.1039/C7TB02557B 32254194 

  12. 12. Godoy-Gallardo M. Mas-Moruno C. Yu K. Manero J.M. Gil F.J. Kizhakkedathu J.N. Rodriguez D. Antibacterial Properties of hLf1–11 Peptide onto Titanium Surfaces: A Comparison Study Between Silanization and Surface Initiated Polymerization Biomacromolecules 2015 16 483 496 10.1021/bm501528x 25545728 

  13. 13. Gao G.Z. Lange D. Hilpert K. Kindrachuk J. Zou Y.Q. Cheng J.T.J. Kazemzadeh-Narbat M. Yu K. Wang R.Z. Straus S.K. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides Biomaterials 2011 32 3899 3909 10.1016/j.biomaterials.2011.02.013 21377727 

  14. 14. Wei T. Zhan W.J. Cao L.M. Hu C.M. Qu Y.C. Yu Q. Chen H. Multifunctional and Regenerable Antibacterial Surfaces Fabricated by a Universal Strategy ACS Appl. Mater. Interfaces 2016 8 30048 30057 10.1021/acsami.6b11187 27759376 

  15. 15. Li M. Mitra D. Kang E.T. Lau T. Chiong E. Neoh K.G. Thiol-ol Chemistry for Grafting of Natural Polymers to Form Highly Stable and Efficacious Antibacterial Coatings ACS Appl. Mater. Int. 2017 9 1847 1857 10.1021/acsami.6b10240 27991755 

  16. 16. Qi H.S. Zhang C. Guo H.S. Zheng W.W. Yang J. Zhou X. Zhang L. Bioinspired Multifunctional Protein Coating for Antifogging, Self-Cleaning, and Antimicrobial Properties ACS Appl. Mater. Int. 2019 11 24504 24511 10.1021/acsami.9b03522 

  17. 17. Sundaram H.S. Han X. Nowinski A.K. Ella-Menye J.R. Wimbish C. Marek P. Senecal K. Jiang S.Y. One-Step Dip Coating of Zwitterionic Sulfobetaine Polymers on Hydrophobic and Hydrophilic Surfaces ACS Appl. Mater. Interfaces 2014 6 6664 6671 10.1021/am500362k 24730392 

  18. 18. Cheng H. Yue K. Kazemzadeh-Narbat M. Liu Y.H. Khalilpour A. Li B.Y. Zhang Y.S. Annabi N. Khademhosseini A. Mussel-Inspired Multifunctional Hydrogel Coating for Prevention of Infections and Enhanced Osteogenesis ACS Appl. Mater. Interfaces 2017 9 11428 11439 10.1021/acsami.6b16779 28140564 

  19. 19. Li Y.R. Qin M. Li Y. Cao Y. Wang W. Single Molecule Evidence for the Adaptive Binding of DOPA to Different Wet Surfaces Langmuir 2014 30 4358 4366 10.1021/la501189n 24716607 

  20. 20. Lyu Q. Hsueh N. Chai C.L.L. The Chemistry of Bioinspired Catechol(amine)-Based Coatings ACS Biomater. Sci. Eng. 2019 5 2708 2724 10.1021/acsbiomaterials.9b00281 33405603 

  21. 21. Lim K.Y. Chua R.R.Y. Bow H. Tambyah P.A. Hadinoto K. Leong S.S.J. Development of a catheter functionalized by a polydopamine peptide coating with antimicrobial and antibiofilm properties Acta Biomater. 2015 15 127 138 10.1016/j.actbio.2014.12.015 25541344 

  22. 22. Kim D.J. Lee Y.W. Park M.K. Shin J.R. Lim K.J. Cho J.H. Kim S.C. Efficacy of the designer antimicrobial peptide SHAP1 in wound healing and wound infection (vol 46, pg 2333, 2014) Amino Acids 2014 46 2345 10.1007/s00726-014-1804-1 

  23. 23. Yang K.S. Sung B.H. Park M.K. Lee J.H. Lim K.J. Park S.C. Kim S.L. Kim H.K. Sohn J.H. Kim H.M. Recombinant lipase engineered with amphipathic and coiled-coil peptides ACS Catal. 2015 5 5016 5025 10.1021/cs502079g 

  24. 24. Park I.Y. Cho J.H. Kim K.S. Kim Y.B. Kim M.S. Kim S.C. Helix stability confers salt resistance upon helical antimicrobial peptides J. Biol. Chem. 2004 279 13896 13901 10.1074/jbc.M311418200 14718539 

  25. 25. Chen X. Gao Y. Wang Y. Pan G. Mussel-inspired peptide mimicking: An emerging strategy for surface bioengineering of medical implants Smart Mater. Med. 2021 2 299 304 10.1016/j.smaim.2020.10.005 

  26. 26. Zhi Z.L. Su Y.J. Xi Y.W. Tian L. Xu M. Wang Q.Q. Padidan S. Li P. Huang W. Dual-Functional Polyethylene Glycol-b-polyhexanide Surface Coating with in Vitro and in Vivo Antimicrobial and Antifouling Activities ACS Appl. Mater. Interfaces 2017 9 10383 10397 10.1021/acsami.6b12979 28263055 

  27. 27. Riordan L. Smith E.F. Mills S. Hudson J. Stapley S. Nikoi N.D. Edmondson S. Blair J. Peacock A.F.A. Scurr D. Directly bonding antimicrobial peptide mimics to steel and the real world applications of these materials Mat. Sci. Eng. C-Mater. 2019 102 299 304 10.1016/j.msec.2019.03.064 

  28. 28. Valiei A. Okshevsky M. Lin N. Tufenkji N. Anodized Aluminum with Nanoholes Impregnated with Quaternary Ammonium Compounds Can Kill Pathogenic Bacteria within Seconds of Contact ACS Appl. Mater. Interfaces 2018 10 41207 41214 10.1021/acsami.8b17634 30395430 

  29. 29. Mitra D. Li M. Kang E.T. Neoh K.G. Transparent Copper-Based Antibacterial Coatings with Enhanced Efficacy against Pseudomonas aeruginosa ACS Appl. Mater. Interfaces 2019 11 73 83 10.1021/acsami.8b09640 30525426 

  30. 30. Zhu X.Y. Tang L. Wee K.H. Zhao Y.H. Bai R.B. Immobilization of silver in polypropylene membrane for anti-biofouling performance Biofouling 2011 27 773 786 10.1080/08927014.2011.603830 21781019 

  31. 31. Chen J.X. Howell C. Haller C.A. Patel M.S. Ayala P. Moravec K.A. Dai E.B. Liu L.Y. Sotiri I. Aizenberg M. An immobilized liquid interface prevents device associated bacterial infection in vivo Biomaterials 2017 113 80 92 10.1016/j.biomaterials.2016.09.028 27810644 

  32. 32. Bowler P.G. Duerden B.I. Armstrong D.G. Wound microbiology and associated approaches to wound management Clin. Microbiol. Rev. 2001 14 244 269 10.1128/CMR.14.2.244-269.2001 11292638 

  33. 33. Lajoie M.J. Rovner A.J. Goodman D.B. Aerni H.R. Haimovich A.D. Kuznetsov G. Mercer J.A. Wang H.H. Carr P.A. Mosberg J.A. Genomically recoded organisms expand biological functions Science 2013 342 357 360 10.1126/science.1241459 24136966 

  34. 34. Fredens J. Wang K. de la Torre D. Funke L.F.H. Robertson W.E. Christova Y. Chia T. Schmied W.H. Dunkelmann D.L. Beranek V. Total synthesis of Escherichia coli with a recoded genome Nature 2019 569 514 518 10.1038/s41586-019-1192-5 31092918 

  35. 35. Wiegand I. Hilpert K. Hancock R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances Nat. Protoc. 2008 3 163 175 10.1038/nprot.2007.521 18274517 

  36. 36. Shin Y.M. Jun I. Lim Y.M. Rhim T. Shin H. Bio-inspired Immobilization of Cell-Adhesive Ligands on Electrospun Nanofibrous Patches for Cell Delivery Macromol. Mater. Eng. 2013 298 555 564 10.1002/mame.201200217 

  37. 37. Alves D. Pereira M.O. Bio-Inspired Coating Strategies for the Immobilization of Polymyxins to Generate Contact-Killing Surfaces Macromol. Biosci. 2016 16 1450 1460 10.1002/mabi.201600122 27345452 

  38. 38. Chen X.Y. Gao C.Y. Influences of surface coating of PLGA nanoparticles on immune activation of macrophages J. Mater. Chem. B 2018 6 2065 2077 10.1039/C7TB03080K 32254430 

  39. 39. He S. Zhou P. Wang L.X. Xiong X.L. Zhang Y.F. Deng Y. Wei S.C. Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant J. R. Soc. Interface 2014 11 20140169 10.1098/rsif.2014.0169 24647910 

  40. 40. Li X.Y. Gao P. Tan J.Y. Xiong K.Q. Maitz M.F. Pan C.J. Wu H.K. Chen Y. Yang Z.L. Huang N. Assembly of metal phenolic/catecholamine networks for synergistically anti-inflammatory, antimicrobial, and anticoagulant coatings ACS Appl. Mater. Interfaces 2018 10 40844 40853 10.1021/acsami.8b14409 30403339 

  41. 41. Chen R.X. Willcox M.D.P. Ho K.K.K. Smyth D. Kumar N. Antimicrobial peptide melimine coating for titanium and its in vivo antibacterial activity in rodent subcutaneous infection models Biomaterials 2016 85 142 151 10.1016/j.biomaterials.2016.01.063 26871890 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로