최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Aerospace, v.8 no.11, 2021년, pp.346 -
Kim, Do-Young (Department of Aerospace Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea) , Sim, Chang-Hoon (Department of Aerospace Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea) , Park, Jae-Sang (Department of Aerospace Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea) , Yoo, Joon-Tae (Launcher Structures and Materials Team, Korea Aerospace Research Institute, 169-84 Gwahak-ro, Yuseong-gu, Daejeon 34133, Korea) , Yoon, Young-Ha (Launcher Structures and Materials Team, Korea Aerospace Research Institute, 169-84 Gwahak-ro, Yuseong-gu, Daejeon 34133, Korea) , Lee, Keejoo (Future Launcher R&D Program Office, Korea Aerospace Research Institute, 169-84 Gwahak-ro, Yuseong-gu, Daejeon 34133, Korea)
The internal pressure of a thin-walled cylindrical structure under axial compression may improve the buckling stability by relieving loads and reducing initial imperfections. In this study, the effect of internal pressure on the buckling knockdown factor is investigated for axially compressed thin-w...
Peterson, J.P., Seide, P., and Weingarten, V.I. (2020, May 01). Buckling of Thin-Walled Circular Cylinders-NASA SP-8007, Available online: https://ntrs.nasa.gov/citations/20205011530.
Hilburger, M.W. (2020, May 06). Shell Buckling Knockdown Factor Project Overview and Status, NASA/NF1676L-21449, Available online: https://ntrs.nasa.gov/citations/20160007439.
Hilburger, M.W., Waters, W.A.J., and Haynie, W.T. (2020, August 01). Buckling Test Results from the 8-Foot-Diameter orthogrid-Stiffened Cylinder Test Article TA01, NF1676L-20067, Available online: https://ntrs.nasa.gov/citations/20150017037.
Hilburger, M.W., Waters, W.A.J., Haynie, W.T., and Thornburgh, R.P. (2020, August 01). Buckling Test Results from the 8-Foot-Diameter Orthogrid-Stiffened Cylinder Test Article TA02, NASA/TP-2017-219587, L-20801, NF1676L-26704, Available online: https://ntrs.nasa.gov/citations/20170005857.
Degenhardt, R. (2014, January 1-4). New robust design guideline for imperfection sensitive composite launcher structures-The DESICOS project. Proceedings of the 13th European Conference on Spacecraft Structures, Materials and Environment Testing, Braunscheweig, Germany.
Hao Worst multiple perturbation load approach of stiffened shells with and without cutouts for improved knockdown factors Thin-Walled Struct. 2014 10.1016/j.tws.2014.05.004 82 321
Hao Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method Thin-Walled Struct. 2014 10.1016/j.tws.2014.04.004 82 46
Zhao Optimal design of hierarchical grid-stiffened cylindrical shell structures based on linear buckling and nonlinear collapse analyses Thin-Walled Struct. 2017 10.1016/j.tws.2017.06.019 119 315
Wang Grid-pattern optimization framework of novel hierarchical stiffened shells allowing for imperfection sensitivity Aerosp. Sci. Technol. 2017 10.1016/j.ast.2016.12.002 62 114
Wang Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression Thin-Walled Struct. 2016 10.1016/j.tws.2016.09.008 109 13
Orifici Perturbation-based imperfection analysis for composite cylindrical shells buckling in compression Compos. Struct. 2013 10.1016/j.compstruct.2013.06.028 106 520
Bisgani Composite cylindrical shells under static and dynamic axial loading: An experimental campaign Prog. Aerosp. Sci. 2015 10.1016/j.paerosci.2015.06.004 78 107
10.1115/1.4006450 Takano, A. (2012). Statistical knockdown factors of buckling anisotropic cylinders under axial compression. J. Appl. Mech., 79.
Rolfes Robust design of composite cylindrical shells under axial compression-Simulation and validation Thin-Walled Struct. 2008 10.1016/j.tws.2008.01.043 46 947
Wagner Robust knockdown factors for the design of cylindrical shells under axial compression: Potentials, practical application and reliability analysis Int. J. Mech. Sci. 2018 10.1016/j.ijmecsci.2017.11.020 135 410
Degenhardt, R., Bethge, A., Kling, A., Zimmermann, R., and Rohwer, K. (2007, January 3-6). Probabilistic approach for better buckling knockdown factors of CFRP cylindrical shells-Tests and analyses. Proceedings of the 18th Engineering Mechanics Division Conference of the American Society of Civil Engineers, Blacksburg, VA, USA.
Wagner Buckling of cylindrical shells under axial compression with loading imperfections: An experimental and numerical campaign on low knockdown factors Thin-Walled Struct. 2020 10.1016/j.tws.2020.106764 151 106764
Geier On the influence of laminate stacking on buckling of composite cylindrical shells subjected to axial compression Compos. Struct. 2002 10.1016/S0263-8223(01)00175-1 55 467
(2020, August 01). Anonymous, Falcon User’s Guide, SPACE Exploration Technologies Corp. Available online: https://www.spacex.com/media/falcon-users-guide-2021-08.pdf.
(2020, October 01). Anonymous, Ariane 5 User’s Manual Issue 5 Revision 2, Arianespace. Available online: https://www.arianespace.com/wp-content/uploads/2011/07/Ariane5_Users-Manual_October2016.pdf.
Lo, H., Crate, H., and Schwartz, E.B. (2021, January 01). Buckling of Thin-Walled Cylinder under Axial Compression and Internal Pressure, NACA/TR-1027, Available online: https://ntrs.nasa.gov/citations/19930090955.
Graham, J.B., and Luz, P.L. (2020, June 01). Preliminary In-Flight Loads Analysis of In-Line Launch Vehicles Using the VLOADS 1.4 Program, NASA/TM-1998-208472, Available online: https://ntrs.nasa.gov/citations/19980201045.
Kim Postbuckling analyses and derivations of shell knockdown factors for isogrid-stiffened cylinders under compressive force and internal pressure J. Korean Soc. Aeronaut. Space Sci. 2020 48 653
10.1155/2020/9851984 Kim, H.-I., Sim, C.-H., Park, J.-S., Lee, K., Yoo, J.-T., and Yoon, Y.-H. (2020). Numerical derivation of buckling knockdown factors for isogrid-stiffened cylinders with various shell thickness ratios. Int. J. Aerosp. Eng.
Sim Derivation of knockdown factors for grid-stiffened cylinders considering various shell thickness ratios Aircr. Eng. Aerosp. Technol. 2019 10.1108/AEAT-11-2018-0272 91 1314
Sim Postbuckling analyses and derivations of knockdown factors for hybrid-grid stiffened cylinders Aerosp. Sci. Technol. 2018 10.1016/j.ast.2018.08.025 82-83 20
Sim Derivations of knockdown factors for cylindrical structures considering different initial imperfection models and thickness ratios Int. J. Aeronaut. Space Sci. 2018 10.1007/s42405-018-0069-4 19 626
Koiter, W.T. (1970). A Translation of the Stability of Elastic Equilibrium, Management Information Services Ltd.
Tsien The buckling of thin cylindrical shells under axial compression J. Aeronaut. Sci. 1941 10.2514/8.10722 8 303
Elishakoff Probabilistic resolution of the twentieth century conundrum in elastic stability Thin-Walled Struct. 2012 10.1016/j.tws.2012.04.002 59 35
Wagner Robust design criterion for axially loaded cylindrical shells- Simulation and validation Thin-Walled Struct. 2017 10.1016/j.tws.2016.12.017 115 154
Deml Direct evaluation of the ‘worst’ imperfection shape in shell buckling Comput. Methods Appl. Mech. Eng. 1997 10.1016/S0045-7825(97)00055-8 149 201
Wagner Constant single-buckling imperfection principle to determine a lower bound for the buckling load of unstiffened composite cylinders under axial compression Compos. Struct. 2016 10.1016/j.compstruct.2015.11.047 139 120
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.