$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Buckling Knockdown Factors of Composite Cylinders under Both Compression and Internal Pressure 원문보기

Aerospace, v.8 no.11, 2021년, pp.346 -   

Kim, Do-Young (Department of Aerospace Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea) ,  Sim, Chang-Hoon (Department of Aerospace Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea) ,  Park, Jae-Sang (Department of Aerospace Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea) ,  Yoo, Joon-Tae (Launcher Structures and Materials Team, Korea Aerospace Research Institute, 169-84 Gwahak-ro, Yuseong-gu, Daejeon 34133, Korea) ,  Yoon, Young-Ha (Launcher Structures and Materials Team, Korea Aerospace Research Institute, 169-84 Gwahak-ro, Yuseong-gu, Daejeon 34133, Korea) ,  Lee, Keejoo (Future Launcher R&D Program Office, Korea Aerospace Research Institute, 169-84 Gwahak-ro, Yuseong-gu, Daejeon 34133, Korea)

Abstract AI-Helper 아이콘AI-Helper

The internal pressure of a thin-walled cylindrical structure under axial compression may improve the buckling stability by relieving loads and reducing initial imperfections. In this study, the effect of internal pressure on the buckling knockdown factor is investigated for axially compressed thin-w...

참고문헌 (37)

  1. 10.2514/6.2010-1972 Salt, D.J. (2010, January 25-30). Space operations for a newspace era. Proceedings of the SpaceOps 2010 Conference, Huntsville, AL, USA. 

  2. Peterson, J.P., Seide, P., and Weingarten, V.I. (2020, May 01). Buckling of Thin-Walled Circular Cylinders-NASA SP-8007, Available online: https://ntrs.nasa.gov/citations/20205011530. 

  3. Hilburger, M.W. (2020, May 06). Shell Buckling Knockdown Factor Project Overview and Status, NASA/NF1676L-21449, Available online: https://ntrs.nasa.gov/citations/20160007439. 

  4. Hilburger, M.W., Waters, W.A.J., and Haynie, W.T. (2020, August 01). Buckling Test Results from the 8-Foot-Diameter orthogrid-Stiffened Cylinder Test Article TA01, NF1676L-20067, Available online: https://ntrs.nasa.gov/citations/20150017037. 

  5. Hilburger, M.W., Waters, W.A.J., Haynie, W.T., and Thornburgh, R.P. (2020, August 01). Buckling Test Results from the 8-Foot-Diameter Orthogrid-Stiffened Cylinder Test Article TA02, NASA/TP-2017-219587, L-20801, NF1676L-26704, Available online: https://ntrs.nasa.gov/citations/20170005857. 

  6. Degenhardt, R. (2014, January 1-4). New robust design guideline for imperfection sensitive composite launcher structures-The DESICOS project. Proceedings of the 13th European Conference on Spacecraft Structures, Materials and Environment Testing, Braunscheweig, Germany. 

  7. 10.5772/45810 Degenhardt, R., Kling, A., Zimmermann, R., Odermann, F., and Araújo, F.C. (2012). Chapter Dealing with Imperfection Sensitivity of Composite Structures Prone to Buckling, InTechOpen Ltd. 

  8. Hao Worst multiple perturbation load approach of stiffened shells with and without cutouts for improved knockdown factors Thin-Walled Struct. 2014 10.1016/j.tws.2014.05.004 82 321 

  9. Hao Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method Thin-Walled Struct. 2014 10.1016/j.tws.2014.04.004 82 46 

  10. Zhao Optimal design of hierarchical grid-stiffened cylindrical shell structures based on linear buckling and nonlinear collapse analyses Thin-Walled Struct. 2017 10.1016/j.tws.2017.06.019 119 315 

  11. Wang Grid-pattern optimization framework of novel hierarchical stiffened shells allowing for imperfection sensitivity Aerosp. Sci. Technol. 2017 10.1016/j.ast.2016.12.002 62 114 

  12. Wang Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression Thin-Walled Struct. 2016 10.1016/j.tws.2016.09.008 109 13 

  13. Orifici Perturbation-based imperfection analysis for composite cylindrical shells buckling in compression Compos. Struct. 2013 10.1016/j.compstruct.2013.06.028 106 520 

  14. Bisgani Composite cylindrical shells under static and dynamic axial loading: An experimental campaign Prog. Aerosp. Sci. 2015 10.1016/j.paerosci.2015.06.004 78 107 

  15. 10.1115/1.4006450 Takano, A. (2012). Statistical knockdown factors of buckling anisotropic cylinders under axial compression. J. Appl. Mech., 79. 

  16. Rolfes Robust design of composite cylindrical shells under axial compression-Simulation and validation Thin-Walled Struct. 2008 10.1016/j.tws.2008.01.043 46 947 

  17. Wagner Robust knockdown factors for the design of cylindrical shells under axial compression: Potentials, practical application and reliability analysis Int. J. Mech. Sci. 2018 10.1016/j.ijmecsci.2017.11.020 135 410 

  18. Degenhardt, R., Bethge, A., Kling, A., Zimmermann, R., and Rohwer, K. (2007, January 3-6). Probabilistic approach for better buckling knockdown factors of CFRP cylindrical shells-Tests and analyses. Proceedings of the 18th Engineering Mechanics Division Conference of the American Society of Civil Engineers, Blacksburg, VA, USA. 

  19. Wagner Buckling of cylindrical shells under axial compression with loading imperfections: An experimental and numerical campaign on low knockdown factors Thin-Walled Struct. 2020 10.1016/j.tws.2020.106764 151 106764 

  20. Geier On the influence of laminate stacking on buckling of composite cylindrical shells subjected to axial compression Compos. Struct. 2002 10.1016/S0263-8223(01)00175-1 55 467 

  21. (2020, August 01). Anonymous, Falcon User’s Guide, SPACE Exploration Technologies Corp. Available online: https://www.spacex.com/media/falcon-users-guide-2021-08.pdf. 

  22. (2020, October 01). Anonymous, Ariane 5 User’s Manual Issue 5 Revision 2, Arianespace. Available online: https://www.arianespace.com/wp-content/uploads/2011/07/Ariane5_Users-Manual_October2016.pdf. 

  23. Lo, H., Crate, H., and Schwartz, E.B. (2021, January 01). Buckling of Thin-Walled Cylinder under Axial Compression and Internal Pressure, NACA/TR-1027, Available online: https://ntrs.nasa.gov/citations/19930090955. 

  24. Graham, J.B., and Luz, P.L. (2020, June 01). Preliminary In-Flight Loads Analysis of In-Line Launch Vehicles Using the VLOADS 1.4 Program, NASA/TM-1998-208472, Available online: https://ntrs.nasa.gov/citations/19980201045. 

  25. 10.2514/6.2018-1990 Hilburger, M.W. (2018, January 8-12). On the Development of Shell Buckling Knockdown Factors for Stiffened Metallic Launch Vehicle Cylinders. Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA. 

  26. Kim Postbuckling analyses and derivations of shell knockdown factors for isogrid-stiffened cylinders under compressive force and internal pressure J. Korean Soc. Aeronaut. Space Sci. 2020 48 653 

  27. 10.1155/2020/9851984 Kim, H.-I., Sim, C.-H., Park, J.-S., Lee, K., Yoo, J.-T., and Yoon, Y.-H. (2020). Numerical derivation of buckling knockdown factors for isogrid-stiffened cylinders with various shell thickness ratios. Int. J. Aerosp. Eng. 

  28. Sim Derivation of knockdown factors for grid-stiffened cylinders considering various shell thickness ratios Aircr. Eng. Aerosp. Technol. 2019 10.1108/AEAT-11-2018-0272 91 1314 

  29. Sim Postbuckling analyses and derivations of knockdown factors for hybrid-grid stiffened cylinders Aerosp. Sci. Technol. 2018 10.1016/j.ast.2018.08.025 82-83 20 

  30. Sim Derivations of knockdown factors for cylindrical structures considering different initial imperfection models and thickness ratios Int. J. Aeronaut. Space Sci. 2018 10.1007/s42405-018-0069-4 19 626 

  31. Koiter, W.T. (1970). A Translation of the Stability of Elastic Equilibrium, Management Information Services Ltd. 

  32. Tsien The buckling of thin cylindrical shells under axial compression J. Aeronaut. Sci. 1941 10.2514/8.10722 8 303 

  33. Elishakoff Probabilistic resolution of the twentieth century conundrum in elastic stability Thin-Walled Struct. 2012 10.1016/j.tws.2012.04.002 59 35 

  34. Wagner Robust design criterion for axially loaded cylindrical shells- Simulation and validation Thin-Walled Struct. 2017 10.1016/j.tws.2016.12.017 115 154 

  35. Deml Direct evaluation of the ‘worst’ imperfection shape in shell buckling Comput. Methods Appl. Mech. Eng. 1997 10.1016/S0045-7825(97)00055-8 149 201 

  36. Wagner Constant single-buckling imperfection principle to determine a lower bound for the buckling load of unstiffened composite cylinders under axial compression Compos. Struct. 2016 10.1016/j.compstruct.2015.11.047 139 120 

  37. 10.2514/6.2012-1686 Hilburger, M.W. (2012, January 23-26). Developing the next generation shell buckling design factors and technologies. Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로