$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Solar Event Detection Using Deep-Learning-Based Object Detection Methods

Solar physics, v.296 no.11, 2021년, pp.160 -   

Baek, Ji-Hye ,  Kim, Sujin ,  Choi, Seonghwan ,  Park, Jongyeob ,  Kim, Jihun ,  Jo, Wonkeun ,  Kim, Dongil

초록이 없습니다.

참고문헌 (40)

  1. Solar Phys. J.A. Armstrong 294 80 2019 10.1007/s11207-019-1473-z Armstrong, J.A., Fletcher, L.: 2019, Fast solar image classification using deep learning and its importance for automation in solar physics. Solar Phys. 294, 80. 

  2. Solar Phys. M.J. Aschwanden 262 235 2010 10.1007/s11207-009-9474-y Aschwanden, M.J.: 2010, Image processing techniques and feature recognition in solar physics. Solar Phys. 262, 235. 

  3. Solar Phys. M.J. Aschwanden 248 359 2008 10.1007/s11207-007-9064-9 Aschwanden, M.J., Lee, J.K., Gary, G.A., Smith, M., Inhester, B.: 2008, Extraction of solar coronal magnetic loops with the directional 2D Morlet wavelet transform. Solar Phys. 248, 359. 

  4. J.M. Banda 528 2010 Proc. Int. Conf. on Digital Image Computing: Techniques and Applications Banda, J.M., Angryk, R.A.: 2010, Selection of image parameters as the first step towards creating a CBIR system for the Solar Dynamics Observatory. In: Proc. Int. Conf. on Digital Image Computing: Techniques and Applications, 528. 

  5. J.M. Banda 649 2014 Proc. Int. Conf. on Artificial Intelligence and Soft Computing 10.1007/978-3-319-07173-2_55 Banda, J.M., Angryk, R.A.: 2014, Large-scale region-based multimedia retrieval for solar images. In: Proc. Int. Conf. on Artificial Intelligence and Soft Computing, Zakopane, Poland, 649. 

  6. Astron. Astrophys. R. Brajša 613 2018 10.1051/0004-6361/201730656 Brajša, R., Sudar, D., Benz, A.O., Skokić, I., Bárta, M., Pontieu, B.D., Kim, S., Kobelski, A., Kuhar, M., Shimojo, M., Wedemeyer, S., White, S., Yagoubov, P., Yan, Y.: 2018, First analysis of solar structures in 1.21 mm full-disc ALMA image of the Sun. Astron. Astrophys. 613, A17. 

  7. Z. Cai 2018 Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition Cai, Z., Vasconcelos, N.: 2018, Cascade R-CNN: delving into high quality object detection. In: Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition. 

  8. Solar Phys. J.J. Curto 250 411 2008 10.1007/s11207-008-9224-6 Curto, J.J., Blanca, M., Martinez, E.: 2008, Automatic sunspots detection on full-disk solar images using mathematical morphology. Solar Phys. 250, 411. 

  9. J. Dai 1 2016 Proc. 30th Conf. on Neural Information Processing Systems Dai, J., Li, Y., He, K., Sun, J.: 2016, R-FCN: object detection via region-based fully convolutional networks. In: Proc. 30th Conf. on Neural Information Processing Systems, NIPS 2016, 1. 

  10. R. Girshick 1440 2015 Proc. IEEE Int. Conf. on Computer Vision Girshick, R.: 2015, Fast R-CNN. In: Proc. IEEE Int. Conf. on Computer Vision, 1440. 

  11. R. Girshick 1 2014 Proc. IEEE Conf. on Computer Vision and Pattern Recognition Girshick, R., Donahue, J., Darrell, T., Malik, J.: 2014, Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 1. 

  12. K. He 770 2016 Proc. IEEE Conf. on Computer Vision and Pattern Recognition He, K., Zhang, X., Ren, S., Sun, J.: 2016, Deep residual learning for image recognition. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 770. 

  13. K. He 2380 2017 Proc. IEEE Int. Conf. on Computer Vision He, K., Gkioxari, G., Dollár, P., Girshick, R.: 2017, Mask R-CNN. In: Proc. IEEE Int. Conf. on Computer Vision, ICCV, 2380. 

  14. J. Huang 3296 2017 Proc. IEEE Conf. on Computer Vision and Pattern Recognition Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., Murphy, K.: 2017, Speed/accuracy trade-offs for modern convolutional object detectors. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 3296. 

  15. Solar Phys. N. Hurlburt 275 67 2012 10.1007/s11207-010-9624-2 Hurlburt, N., Cheung, M., Schrijver, C., Chhang, L., Freeland, S., Green, S., Heck, C., Jaffey, A., Kobashi, A., Schiff, D., Serafin, J., Seguin, R., Slater, G., Somani, A., Timmons, R.: 2012, Heliophysics event knowledgebase for the Solar Dynamics Observatory (SDO) and beyond. Solar Phys. 275, 67. 

  16. Solar Phys. B. Inhester 248 379 2008 10.1007/s11207-007-9027-1 Inhester, B., Feng, L., Wiegelmann, T.: 2008, Segmentation of loops from coronal EUV images. Solar Phys. 248, 379. 

  17. Solar Phys. J. Ireland 252 121 2008 10.1007/s11207-008-9233-5 Ireland, J., Young, C.A., McAteer, R.T.J., Whelan, C., Hewett, R.J., Gallagher, P.T.: 2008, Multiresolution analysis of active region magnetic structure and its correlation with the Mount Wilson classification and flaring activity. Solar Phys. 252, 121. 

  18. Astrophys. J. H.-J. Jeong 903 L25 2020 10.3847/2041-8213/abc255 Jeong, H.-J., Moon, Y.J., Park, E., Lee, H.: 2020, Solar coronal magnetic field extrapolation from synchronic data with AI-generated farside. Astrophys. J. 903, L25. 

  19. J. Korean Astron. Soc. S. Kim 50 125 2017 10.5303/JKAS.2017.50.4.125 Kim, S., Park, J.-Y., Kim, Y.-H.: 2017, Solar cycle variation of microwave polar brightening and EUV coronal hole observed by Nobeyama Radioheliograph and SDO/AIA. J. Korean Astron. Soc. 50, 125. 

  20. Nature Astron. T. Kim 3 397 2019 10.1038/s41550-019-0711-5 Kim, T., Park, E., Lee, H., Moon, Y.-J., Bae, S.-H., Lim, D., Jang, S., Kim, L., Cho, I.-H., Choi, M., Cho, K.-S.: 2019, Solar farside magnetograms from deep learning analysis of STEREO/EUVI data. Nature Astron. 3, 397. 

  21. A. Kucuk 2552 2017 Proc. IEEE Int. Conf. on Big Data Kucuk, A., Aydin, B., Angryk, R.: 2017, Multi-wavelength solar event detection using faster R-CNN. In: Proc. IEEE Int. Conf. on Big Data, 2552. 

  22. A. Kucuk 118 2017 Proc. Int. Conf. on Artificial Intelligence and Soft Computing Kucuk, A., Banda, J.M., Angryk, R.A.: 2017, Solar event classification using deep convolutional neural networks. In: Proc. Int. Conf. on Artificial Intelligence and Soft Computing, 118. 

  23. Pattern Recognit. J.K. Lee 39 246 2006 10.1016/j.patcog.2005.07.004 Lee, J.K., Newmann, T.S., Gary, G.A.: 2006, Oriented connectivity-based method for segmenting solar loops. Pattern Recognit. 39, 246. 

  24. Solar Phys. J.R. Lemen 275 17 2012 10.1007/s11207-011-9776-8 Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. 

  25. T.-Y. Lin 2980 2017 Proc. IEEE Int. Conf. on Computer Vision Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: 2017, Focal loss for dense object detection. In: Proc. IEEE Int. Conf. on Computer Vision, ICCV, 2980. 

  26. W. Liu 21 2016 Proc. European Conf. on Computer Vision Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: 2016, SSD: single shot multibox detector. In: Proc. European Conf. on Computer Vision, ECCV, 21. 

  27. Solar Phys. P. Martens 275 79 2012 10.1007/s11207-010-9697-y Martens, P., Attrill, G., Davey, A., Engell, A., Farid, S., Grigis, P., Kasper, J., Korreck, K., Saar, S., Savcheva, A., Su, Y., Testa, P., Wills-Davey, M., Bernasconi, P.N., Raouafi, N.-E., Delouille, V.A., Hochedez, J.F., Cirtain, J.W., DeForest, C.E., Angryk, R.A., Moortel, I.D., Wiegelmann, T., Georgoulis, M.K., McAteer, R.T.J., Timmons, R.P.: 2012, Computer vision for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 79. 

  28. Solar Phys. R.T.J. McAteer 228 55 2005 10.1007/s11207-005-4075-x McAteer, R.T.J., Gallagher, P.T., Ireland, J., Young, C.A.: 2005, Automated boundary-extraction and region-growing techniques applied to solar magnetograms. Solar Phys. 228, 55. 

  29. Astrophys. J. E. Park 869 91 2018 10.3847/1538-4357/aaed40 Park, E., Moon, Y.-J., Shin, S., Yi, K., Lim, D., Lee, H., Shin, G.: 2018, Application of the deep convolutional neural network to the forecast of solar flare occurrence using full-disk solar magnetograms. Astrophys. J. 869, 91. 

  30. Astrophys. J. E. Park 891 L4 2020 10.3847/2041-8213/ab74d2 Park, E., Moon, Y.-J., Lim, D., Lee, H.: 2020, De-noising SDO/HMI solar magnetograms by image translation method based on deep learning. Astrophys. J. 891, L4. 

  31. Solar Phys. F. Portier-Fozzani 201 271 2001 10.1023/A:1017579625208 Portier-Fozzani, F., Vandame, B., Bijaoui, A., Maucherat, A.J., Team, E.: 2001, A Multiscale Vision Model applied to analyze EIT images of the solar corona. Solar Phys. 201, 271. 

  32. E. Priest 2014 Magnetohydrodynamics of the Sun 10.1017/CBO9781139020732 Priest, E.: 2014, Magnetohydrodynamics of the Sun, Cambridge University Press, Cambridge. DOI. ISBN: 9781139020732. 

  33. Astrophys. J. S. Rahman 897 L32 2020 10.3847/2041-8213/ab9d79 Rahman, S., Moon, Y.-J., Park, E., Siddique, A., Cho, I.-H., Lim, D.: 2020, Super-resolution of SDO/HMI magnetograms using novel deep learning methods. Astrophys. J. 897, L32. 

  34. J. Redmon 779 2016 Proc. IEEE Conf. on Computer Vision and Pattern Recognition Redmon, J., Divval, S., Girshick, R., Farhadi, A.: 2016, You only look once: unified, real-time object detection. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 779. 

  35. IEEE Trans. Pattern Anal. Mach. Intell. S. Ren 39 6 2017 Ren, S., He, K., Girshick, R., Sun, J.: 2017, Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 6. 

  36. Solar Phys. P.H. Scherrer 275 207 2012 10.1007/s11207-011-9834-2 Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall Jr., T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMi) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. 

  37. Solar Phys. J. Schou 275 229 2012 10.1007/s11207-011-9842-2 Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall Jr., T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. 

  38. Tzutalin: 2015, LabelImg git code. https://github.com/tzutalin/labelImg. 

  39. Solar Phys. T.N. Woods 275 115 2012 10.1007/s11207-009-9487-6 Woods, T.N., Eparvier, F.G., Hock, R., Jones, A.R., Woodraska, D., Judge, D., Didkovsky, L., Lean, J., Mariska, J., Warren, H., McMullin, D., Chamberlin, P., Berthiaume, G., Bailey, S., Fuller-Rowell, T., Sojka, J., Tobiska, W.K., Viereck, R.: 2012, Extreme Ultraviolet Variability Experiment (eve) on the Solar Dynamics Observatory (SDO): overview of science objectives, instrument design, data products, and model developments. Solar Phys. 275, 115. 

  40. S. Zhang 4203 2018 Proc. IEEE Conf. on Computer Vision and Pattern Recognition Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: 2018, Single-shot refinement neural network for object detection. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 4203. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로