$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Suppressing Charge Disproportionation of MnO2 Cathodes in Rechargeable Zinc Ion Batteries via Cooperative Jahn‐Teller Distortion

Batteries & supercaps, v.4 no.12, 2021년, pp.1881 - 1888  

Heo, Jiyun (Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 291 Daehak-ro Yuseong-gu, Daejeon 34141 Republic of Korea) ,  Chong, Sanggyu (Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 291 Daehak-ro Yuseong-gu, Daejeon 34141 Republic of Korea) ,  Kim, Soohyun (Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 291 Daehak-ro Yuseong-gu, Daejeon 34141 Republic of Korea) ,  Kim, Riyul (Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 291 Daehak-ro Yuseong-gu, Daejeon 34141 Republic of Korea) ,  Shin, Kyungjae (Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 291 Daehak-ro Yuseong-gu, Daejeon 34141 Republic of Korea) ,  Kim, Jihan (Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 291 Daehak-ro Yuseong-gu, Daejeon 34141 Republic of Korea) ,  Kim, Hee‐Tak (Department of Chemical)

Abstract AI-Helper 아이콘AI-Helper

AbstractMnO2 is a promising candidate material as intercalative cathodes in rechargeable aqueous zinc ion batteries (ZIBs). It is renowned for its low cost, minimal toxicity, and high energy density; however, severe capacity fading from the dissolution of MnO2 remains a critical challenge that must ...

참고문헌 (53)

  1. Ma, Lin, Schroeder, Marshall A., Borodin, Oleg, Pollard, Travis P., Ding, Michael S., Wang, Chunsheng, Xu, Kang. Realizing high zinc reversibility in rechargeable batteries. Nature energy, vol.5, no.10, 743-749.

  2. Jin, Yan, Zou, Lianfeng, Liu, Lili, Engelhard, Mark H., Patel, Rajankumar L., Nie, Zimin, Han, Kee Sung, Shao, Yuyan, Wang, Chongmin, Zhu, Jia, Pan, Huilin, Liu, Jun. Joint Charge Storage for High‐Rate Aqueous Zinc–Manganese Dioxide Batteries. Advanced materials, vol.31, no.29, 1900567-.

  3. Zhao, Zhiming, Zhao, Jingwen, Hu, Zhenglin, Li, Jiedong, Li, Jiajia, Zhang, Yaojian, Wang, Cheng, Cui, Guanglei. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy & environmental science, vol.12, no.6, 1938-1949.

  4. Gao, Jiawei, Xie, Xuesong, Liang, Shuquan, Lu, Bingan, Zhou, Jiang. Inorganic Colloidal Electrolyte for Highly Robust Zinc-Ion Batteries. Nano-micro letters, vol.13, no.1, 69-.

  5. Cao, Longsheng, Li, Dan, Deng, Tao, Li, Qin, Wang, Chunsheng. Hydrophobic Organic‐Electrolyte‐Protected Zinc Anodes for Aqueous Zinc Batteries. Angewandte Chemie. international edition, vol.59, no.43, 19292-19296.

  6. Cao, Longsheng, Li, Dan, Deng, Tao, Li, Qin, Wang, Chunsheng. Hydrophobic Organic‐Electrolyte‐Protected Zinc Anodes for Aqueous Zinc Batteries. Angewandte Chemie, vol.132, no.43, 19454-19458.

  7. Zhao, Yinlei, Zhu, Yunhai, Zhang, Xinbo. Challenges and perspectives for manganese‐based oxides for advanced aqueous zinc‐ion batteries. Infomat : novel materials for next-generation information system, vol.2, no.2, 237-260.

  8. Hao, Junnan, Li, Xiaolong, Zhang, Shilin, Yang, Fuhua, Zeng, Xiaohui, Zhang, Shuai, Bo, Guyue, Wang, Chunsheng, Guo, Zaiping. Designing Dendrite‐Free Zinc Anodes for Advanced Aqueous Zinc Batteries. Advanced functional materials, vol.30, no.30, 2001263-.

  9. Ma, Longtao, Chen, Shengmei, Long, Changbai, Li, Xinliang, Zhao, Yuwei, Liu, Zhuoxin, Huang, Zhaodong, Dong, Binbin, Zapien, Juan Antonio, Zhi, Chunyi. Achieving High‐Voltage and High‐Capacity Aqueous Rechargeable Zinc Ion Battery by Incorporating Two‐Species Redox Reaction. Advanced energy materials, vol.9, no.45, 1902446-.

  10. Kundu, Dipan, Adams, Brian D., Duffort, Victor, Vajargah, Shahrzad Hosseini, Nazar, Linda F.. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nature energy, vol.1, 16119-.

  11. Kim, Chanhoon, Ahn, Bok Yeop, Wei, Teng-Sing, Jo, Yejin, Jeong, Sunho, Choi, Youngmin, Kim, Il-Doo, Lewis, Jennifer A.. High-Power Aqueous Zinc-Ion Batteries for Customized Electronic Devices. ACS nano, vol.12, no.12, 11838-11846.

  12. Zhang, Leyuan, Chen, Liang, Zhou, Xufeng, Liu, Zhaoping. Towards High‐Voltage Aqueous Metal‐Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System. Advanced energy materials, vol.5, no.2, 1400930-.

  13. InfoMat Shan L. inf2 2021 

  14. Jiang, Yuqi, Ba, Deliang, Li, Yuanyuan, Liu, Jinping. Noninterference Revealing of “Layered to Layered” Zinc Storage Mechanism of δ‐MnO 2 toward Neutral Zn–Mn Batteries with Superior Performance. Advanced science, vol.7, no.6, 1902795-.

  15. Guo, Cong, Liu, Huimin, Li, Jingfa, Hou, Zhiguo, Liang, Jianwen, Zhou, Jie, Zhu, Yongchun, Qian, Yitai. Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery. Electrochimica acta, vol.304, 370-377.

  16. Yan, J., Fan, Z., Wei, T., Qian, W., Zhang, M., Wei, F.. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon, vol.48, no.13, 3825-3833.

  17. Gueon, Donghee, Moon, Jun Hyuk. MnO2 Nanoflake-Shelled Carbon Nanotube Particles for High-Performance Supercapacitors. ACS sustainable chemistry et engineering, vol.5, no.3, 2445-2453.

  18. Pan, Huilin, Shao, Yuyan, Yan, Pengfei, Cheng, Yingwen, Han, Kee Sung, Nie, Zimin, Wang, Chongmin, Yang, Jihui, Li, Xiaolin, Bhattacharya, Priyanka, Mueller, Karl T., Liu, Jun. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nature energy, vol.1, 16039-.

  19. Alfaruqi, Muhammad Hilmy, Islam, Saiful, Putro, Dimas Yunianto, Mathew, Vinod, Kim, Sungjin, Jo, Jeonggeun, Kim, Seokhun, Sun, Yang-Kook, Kim, Kwangho, Kim, Jaekook. Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochimica acta, vol.276, 1-11.

  20. Fu, Yanqing, Wei, Qiliang, Zhang, Gaixia, Wang, Xiaomin, Zhang, Jihai, Hu, Yongfeng, Wang, Dongniu, Zuin, Lucia, Zhou, Tao, Wu, Yucheng, Sun, Shuhui. High‐Performance Reversible Aqueous Zn‐Ion Battery Based on Porous MnOx Nanorods Coated by MOF‐Derived N‐Doped Carbon. Advanced energy materials, vol.8, no.26, 1801445-.

  21. Liu, Yu, Zhi, Jian, Sedighi, Mina, Han, Mei, Shi, Qiuyu, Wu, Yan, Chen, P.. Mn2+ Ions Confined by Electrode Microskin for Aqueous Battery beyond Intercalation Capacity. Advanced energy materials, vol.10, no.42, 2002578-.

  22. Hou, Zhiguo, Dong, Mengfei, Xiong, Yali, Zhang, Xueqian, Ao, Huaisheng, Liu, Mengke, Zhu, Yongchun, Qian, Yitai. A High‐Energy and Long‐Life Aqueous Zn/Birnessite Battery via Reversible Water and Zn2+ Coinsertion. Small, vol.16, no.26, 2001228-.

  23. Huang, Jianhang, Wang, Zhuo, Hou, Mengyan, Dong, Xiaoli, Liu, Yao, Wang, Yonggang, Xia, Yongyao. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nature communications, vol.9, no.1, 2906-.

  24. NamK. W. Nam and H. Kim contributed equally to this work., Kwan Woo, Kim, Heejin, Choi, Jin Hyeok, Choi, Jang Wook. Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy & environmental science, vol.12, no.6, 1999-2009.

  25. Liu, Wei-Wei, Wang, Da, Wang, Zhifan, Deng, Jianguo, Lau, Woon-Ming, Zhang, Yanning. Influence of magnetic ordering and Jahn-Teller distortion on the lithiation process of LiMn2O4. Physical chemistry chemical physics : PCCP, vol.19, no.9, 6481-6486.

  26. Marianetti, C. A., Morgan, D., Ceder, G.. First-principles investigation of the cooperative Jahn-Teller effect for octahedrally coordinated transition-metal ions. Physical review. B, Condensed matter and materials physics, vol.63, no.22, 224304-.

  27. Stoneham, A.M., Lannoo, M.. The Jahn-Teller instability with accidental degeneracy. The Journal of physics and chemistry of solids, vol.30, no.7, 1769-1777.

  28. Marafatto, Francesco Femi, Strader, Matthew L., Gonzalez-Holguera, Julia, Schwartzberg, Adam, Gilbert, Benjamin, Peña, Jasquelin. Rate and mechanism of the photoreduction of birnessite (MnO2) nanosheets. Proceedings of the National Academy of Sciences of the United States of America, vol.112, no.15, 4600-4605.

  29. Chakravarty, A., Sengupta, D., Basu, B., Mukherjee, A., De, G.. MnO2 nanowires anchored on amine functionalized graphite nanosheets: highly active and reusable catalyst for organic oxidation reactions. RSC advances, vol.5, no.112, 92585-92595.

  30. Sharma, Bharat K., Shaikh, Azam M., Agarwal, Neeraj, Kamble, Rajesh M.. Synthesis, photophysical and electrochemical studies of acridone-amine based donor-acceptors for hole transport materials. RSC advances, vol.6, no.21, 17129-17137.

  31. Armstrong, Fraser A. Why did Nature choose manganese to make oxygen?. Philosophical transactions. Biological sciences, vol.363, no.1494, 1263-1270.

  32. Takashima, Toshihiro, Hashimoto, Kazuhito, Nakamura, Ryuhei. Inhibition of Charge Disproportionation of MnO2 Electrocatalysts for Efficient Water Oxidation under Neutral Conditions. Journal of the American Chemical Society, vol.134, no.44, 18153-18156.

  33. Chen, Kui, Wang, Mei, Li, Guangli, He, Quanguo, Liu, Jun, Li, Fuzhi. Spherical α-MnO 2 Supported on N-KB as Efficient Electrocatalyst for Oxygen Reduction in Al–Air Battery. Materials, vol.11, no.4, 601-.

  34. Li, Guanzhou, Huang, Zongxiong, Chen, Jinbiao, Yao, Fu, Liu, Jianping, Li, Oi Lun, Sun, Shuhui, Shi, Zhicong. Rechargeable Zn-ion batteries with high power and energy densities: a two-electron reaction pathway in birnessite MnO2 cathode materials. Journal of materials chemistry. A, Materials for energy and sustainability, vol.8, no.4, 1975-1985.

  35. Zeng, Xiaohui, Liu, Jiatu, Mao, Jianfeng, Hao, Junnan, Wang, Zhijie, Zhou, Si, Ling, Chris D., Guo, Zaiping. Toward a Reversible Mn4+/Mn2+ Redox Reaction and Dendrite‐Free Zn Anode in Near‐Neutral Aqueous Zn/MnO2 Batteries via Salt Anion Chemistry. Advanced energy materials, vol.10, no.32, 1904163-.

  36. Long, Jun, Yang, Fuhua, Cuan, Jing, Wu, Jingxing, Yang, Zhanhong, Jiang, Hao, Song, Rui, Song, Wenlong, Mao, Jianfeng, Guo, Zaiping. Boosted Charge Transfer in Twinborn α-(Mn2O3-MnO2) Heterostructures: Toward High-Rate and Ultralong-Life Zinc-Ion Batteries. ACS applied materials & interfaces, vol.12, no.29, 32526-32535.

  37. Sun, Tianjiang, Nian, Qingshun, Zheng, Shibing, Shi, Jinqiang, Tao, Zhanliang. Layered Ca0.28MnO2·0.5H2O as a High Performance Cathode for Aqueous Zinc‐Ion Battery. Small, vol.16, no.17, 2000597-.

  38. Wu, Chen, Tan, Huiteng, Huang, Wenjing, Li, Weixin, Dinh, Khang Ngoc, Yan, Chunshuang, Wei, Weifeng, Chen, Libao, Yan, Qingyu. A New Scalable Preparation of Metal Nanosheets: Potential Applications for Aqueous Zn‐Ion Batteries Anode. Advanced functional materials, vol.30, no.34, 2003187-.

  39. Sun, Wei, Wang, Fei, Hou, Singyuk, Yang, Chongyin, Fan, Xiulin, Ma, Zhaohui, Gao, Tao, Han, Fudong, Hu, Renzong, Zhu, Min, Wang, Chunsheng. Zn/MnO2 Battery Chemistry With H+ and Zn2+ Coinsertion. Journal of the American Chemical Society, vol.139, no.29, 9775-9778.

  40. Wang, Donghong, Wang, Lufeng, Liang, Guojin, Li, Hongfei, Liu, Zhuoxin, Tang, Zijie, Liang, Jianbo, Zhi, Chunyi. A Superior δ-MnO2 Cathode and a Self-Healing Zn-δ-MnO2 Battery. ACS nano, vol.13, no.9, 10643-10652.

  41. Xie, Guomeng, Liu, Xin, Li, Qing, Lin, Hua, Li, Yuan, Nie, Ming, Qin, Lizhao. The evolution of α-MnO2 from hollow cubes to hollow spheres and their electrochemical performance for supercapacitors. Journal of materials science, vol.52, no.18, 10915-10926.

  42. ACS Appl. Mater. Interfaces Wu Y. 1627 3 2020 

  43. Morgan Chan, Zamyla, Kitchaev, Daniil A., Nelson Weker, Johanna, Schnedermann, Christoph, Lim, Kipil, Ceder, Gerbrand, Tumas, William, Toney, Michael F., Nocera, Daniel G.. Electrochemical trapping of metastable Mn3+ ions for activation of MnO2 oxygen evolution catalysts. Proceedings of the National Academy of Sciences of the United States of America, vol.115, no.23, E5261-E5268.

  44. Zhu, Changrong, Yang, Lu, Seo, Joon Kyo, Zhang, Xiao, Wang, Shen, Shin, JaeWook, Chao, Dongliang, Zhang, Hua, Meng, Ying Shirley, Fan, Hong Jin. Self-branched α-MnO2/δ-MnO2 heterojunction nanowires with enhanced pseudocapacitance. Materials horizons, vol.4, no.3, 415-422.

  45. Julien, C., Massot, M., Baddour-Hadjean, R., Franger, S., Bach, S., Pereira-Ramos, J.P.. Raman spectra of birnessite manganese dioxides. Solid state ionics, vol.159, no.3, 345-356.

  46. Chu, Qingxin, Wang, Xiaofeng, Zhang, Xinhao, Li, Qiliang, Liu, Xiaoyang. Buckled Layers in K0.66Mn2O4·0.28H2O and K0.99Mn3O6·1.25H2O Synthesized at High Pressure: Implication for the Mechanism of Layer-to-Tunnel Transformation in Manganese Oxides. Inorganic chemistry, vol.50, no.6, 2049-2051.

  47. Qiu, Ce, Zhu, Xiaohui, Xue, Liang, Ni, Mingzhu, Zhao, Yang, Liu, Bo, Xia, Hui. The function of Mn2+ additive in aqueous electrolyte for Zn/δ-MnO2 battery. Electrochimica acta, vol.351, 136445-.

  48. Gehring, G A, Gehring, K A. Co-operative Jahn-Teller effects. Reports on progress in physics, vol.38, no.1, 1-89.

  49. Chen, Hungru, Freeman, Colin L., Harding, John H.. Charge disproportionation and Jahn-Teller distortion in LiNiO2and NaNiO2: A density functional theory study. Physical review. B, Condensed matter and materials physics, vol.84, no.8, 085108-.

  50. Wang, Peng-Fei, Jin, Ting, Zhang, Jiaxun, Wang, Qin-Chao, Ji, Xiao, Cui, Chunyu, Piao, Nan, Liu, Sufu, Xu, Jijian, Yang, Xiao-Qing, Wang, Chunsheng. Elucidation of the Jahn-Teller effect in a pair of sodium isomer. Nano energy, vol.77, 105167-.

  51. Blöchl, P. E.. Projector augmented-wave method. Physical review. B, Condensed matter, vol.50, no.24, 17953-17979.

  52. Perdew, John P., Burke, Kieron, Ernzerhof, Matthias. Generalized Gradient Approximation Made Simple. Physical review letters, vol.77, no.18, 3865-3868.

  53. de la Llave, Ezequiel, Talaie, Elahe, Levi, Elena, Nayak, Prasant Kumar, Dixit, Mudit, Rao, Penki Tirupathi, Hartmann, Pascal, Chesneau, Frederick, Major, Dan Thomas, Greenstein, Miri, Aurbach, Doron, Nazar, Linda F.. Improving Energy Density and Structural Stability of Manganese Oxide Cathodes for Na-Ion Batteries by Structural Lithium Substitution. Chemistry of materials : a publication of the American Chemical Society, vol.28, no.24, 9064-9076.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로