$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Perspectives on scaling production of adipose tissue for food applications 원문보기

Biomaterials, v.280, 2022년, pp.121273 -   

Yuen Jr, John S.K. (Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University) ,  Stout, Andrew J. (Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University) ,  Kawecki, N. Stephanie (Department of Bioengineering, University of California Los Angeles) ,  Letcher, Sophia M. (Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University) ,  Theodossiou, Sophia K. (Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University) ,  Cohen, Julian M. (W. M. Keck Science Department, Pitzer College) ,  Barrick, Brigid M. (Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University) ,  Saad, Michael K. (Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University) ,  Rubio, Natalie R. (Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University) ,  Pietropinto, Jaymie A. (Biomedical Engineering Department, Tissue Engi) ,  DiCindio, Hailey ,  Zhang, Sabrina W. ,  Rowat, Amy C. ,  Kaplan, David L.

Abstract AI-Helper 아이콘AI-Helper

Abstract With rising global demand for food proteins and significant environmental impact associated with conventional animal agriculture, it is important to develop sustainable alternatives to supplement existing meat production. Since fat is an important contributor to meat flavor, recapitulating...

주제어

참고문헌 (420)

  1. Steinfeld 2006 Livestock's Long Shadow: Environmental Issues and Options 

  2. 2013 Tackling Climate Change through Livestock: a Global Assessment of Emissions and Mitigation Opportunities 

  3. Pastoralism Glatzle 4 1 2014 10.1186/2041-7136-4-1 Questioning key conclusions of FAO publications ‘livestock's long shadow’ (2006) appearing again in ‘tackling climate change through livestock’ (2013) 

  4. Goodland 2009 Livestock and Climate Change 

  5. 2014 Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 

  6. Nat. Clim. Change Herrero 6 452 2016 10.1038/nclimate2925 Greenhouse gas mitigation potentials in the livestock sector 

  7. Proc. Natl. Acad. Sci. Unit. States Am. Eshel 111 11996 2014 10.1073/pnas.1402183111 Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States 

  8. Sci. Am. Me 295 78 2006 10.1038/scientificamerican1106-78 Reviving dead zones 

  9. Environ. Res. Lett. Leip 10 115004 2015 10.1088/1748-9326/10/11/115004 Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity 

  10. J. Clean. Prod. Zonderland-Thomassen 73 253 2014 10.1016/j.jclepro.2013.12.025 Water footprint of beef cattle and sheep produced in New Zealand: water scarcity and eutrophication impacts 

  11. J. Clean. Prod. Wu 23 122 2012 10.1016/j.jclepro.2011.10.019 Eutrophication mitigation strategies: perspectives from the quantification of phosphorus flows in socioeconomic system of Feixi, Central China 

  12. Antibiotics Abdalla 10 178 2021 10.3390/antibiotics10020178 From farm-to-fork: E. Coli from an intensive pig production system in South Africa shows high resistance to critically important antibiotics for human and animal use 

  13. Antibiotics Tiseo 9 2020 10.3390/antibiotics9120918 Global trends in antimicrobial use in food animals from 2017 to 2030 

  14. Science Boeckel 357 1350 2017 10.1126/science.aao1495 Reducing antimicrobial use in food animals 

  15. Biosaf Health Ma 3 32 2021 10.1016/j.bsheal.2020.09.004 Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans 

  16. Emerg. Infect. Dis. Woolhouse 11 1842 2005 10.3201/eid1112.050997 Host range and emerging and reemerging pathogens 

  17. Proc. Natl. Acad. Sci. U. S. A. Jones 110 8399 2013 10.1073/pnas.1208059110 Zoonosis emergence linked to agricultural intensification and environmental change 

  18. Alexandratos 2012 World Agriculture towards 2030/2050: the 2012 Revision 

  19. Environ. Res. Lett. Shepon 11 105002 2016 10.1088/1748-9326/11/10/105002 Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes 

  20. J. Sci. Food Agric. Detzel 2021 Life cycle assessment of animal-based foods and plant-based protein-rich alternatives: an environmental perspective 

  21. J. Clean. Prod. Saerens 306 127177 2021 10.1016/j.jclepro.2021.127177 Life cycle assessment of burger patties produced with extruded meat substitutes 

  22. Heller 2018 Beyond Meat's beyond Burger Life Cycle Assessment: A Detailed Comparison between a Plant-Based and an Animal-Based Protein Source 

  23. Future Foods Smetana 4 100042 2021 10.1016/j.fufo.2021.100042 Meat substitution in burgers: nutritional scoring, sensorial testing, and Life Cycle Assessment 

  24. Khan 2019 COMPARATIVE ENVIRONMENTAL LCA OF THE IMPOSSIBLE BURGER WITH CONVENTIONAL GROUND BEEF BURGER 

  25. Innovat. Food Sci. Emerg. Technol. Datar 11 13 2010 10.1016/j.ifset.2009.10.007 Possibilities for an in vitro meat production system 

  26. Meat Sci. Post 92 297 2012 10.1016/j.meatsci.2012.04.008 Cultured meat from stem cells: challenges and prospects 

  27. J. Food Sci. Technol. Jayathilakan 49 278 2012 10.1007/s13197-011-0290-7 Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review 

  28. J. Food Sci. Technol. Bhat 48 125 2011 10.1007/s13197-010-0198-7 Prospectus of cultured meat-advancing meat alternatives 

  29. Odegard 2021 LCA of Cultivated Meat. Future Projections for Different Scenarios 

  30. Environ. Sci. Technol. Tuomisto 45 6117 2011 10.1021/es200130u Environmental impacts of cultured meat production 

  31. Tuomisto 2015 Environmental Impacts of Cultured Meat: Alternative Production Scenarios 

  32. J. Integr. Agric. Sun 14 234 2015 10.1016/S2095-3119(14)60891-1 The environmental prospects of cultured meat in China 

  33. Environ. Sci. Technol. Mattick 49 11941 2015 10.1021/acs.est.5b01614 Anticipatory life cycle analysis of in vitro biomass cultivation for cultured meat production in the United States 

  34. Front Sustain Food Syst Allan 3 2019 10.3389/fsufs.2019.00044 Bioprocess design considerations for cultured meat production with a focus on the expansion bioreactor 

  35. Cytotherapy Hanley 16 1048 2014 10.1016/j.jcyt.2014.01.417 Efficient manufacturing of therapeutic mesenchymal stromal cells using the quantum cell expansion system 

  36. Asian-Australas. J. Anim. Sci. Orden 2007 Effects of species and sex on plasma hormone and metabolite concentrations in crossbred Brahman cattle and crossbred water buffalo 

  37. Manoj 2012 Growth Rates and Growth Curve in Sahiwal Cattle 

  38. Undefined Tamzil 2015 Growth rate, carcass weight and percentage weight of carcass parts of laying type cockerels, kampong chicken and Arabic chicken in different ages 

  39. Sci. Rep. Rauw 10 2106 2020 10.1038/s41598-020-58981-w Impact of environmental temperature on production traits in pigs 

  40. ELife Madden 4 2015 10.7554/eLife.04885 Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs 

  41. Food and Agriculture Organization of the United Nations 1991 Guidelines for Slaughtering, Meat Cutting and Further Processing 

  42. Vergeer 2021 TEA of Cultivated Meat. Future Projections for Different Scenarios 

  43. Sci. Rep. van Vliet 11 13828 2021 10.1038/s41598-021-93100-3 A metabolomics comparison of plant-based meat and grass-fed meat indicates large nutritional differences despite comparable Nutrition Facts panels 

  44. Nat Food Ben-Arye 1 2020 Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat 

  45. 2013 World's First Lab-Grown Burger Is Eaten in London 

  46. Metab. Eng. Stout 62 126 2020 10.1016/j.ymben.2020.07.011 Engineering carotenoid production in mammalian cells for nutritionally enhanced cell-cultured foods 

  47. Compr. Rev. Food Sci. Food Saf. He 19 2639 2020 10.1111/1541-4337.12610 A review of research on plant-based meat alternatives: driving forces, history, manufacturing, and consumer attitudes 

  48. J. Integr. Agric. Moritz 14 208 2015 10.1016/S2095-3119(14)60889-3 Alternatives for large-scale production of cultured beef: a review 

  49. Korean J. Food Sci. Anim. Resour. Frank 36 699 2016 10.5851/kosfa.2016.36.6.699 Consumer acceptability of intramuscular fat 

  50. Anim. Sci. J. Nihon Chikusan Gakkaiho Iida 86 707 2015 Effect of fat content on sensory characteristics of marbled beef from Japanese Black steers 

  51. Meat Sci. Frank 133 61 2017 10.1016/j.meatsci.2017.06.006 Effect of marbling on volatile generation, oral breakdown and in mouth flavor release of grilled beef 

  52. J. Agric. Food Chem. Hornstein 8 494 1960 10.1021/jf60112a022 Meat flavor chemistry, flavor studies on beef and pork 

  53. Food Chem. Mottram 62 415 1998 10.1016/S0308-8146(98)00076-4 Flavour formation in meat and meat products: a review 

  54. Ba 2012 Principle of Meat Aroma Flavors and Future Prospect 

  55. J. Sci. Food Agric. Mottram 33 934 1982 10.1002/jsfa.2740330917 A comparison of the flavour volatiles from cooked beef and pork meat systems 

  56. Cells Bahmad 9 2326 2020 10.3390/cells9102326 Modeling adipogenesis: current and future perspective 

  57. Stem Cell. Int. Romito 2016 1 2016 10.1155/2016/9451492 Pluripotent stem cells: current understanding and future directions 

  58. CNBC Kolodny 2021 Meet the company making mouse meat cat treats without harming animals 

  59. J. Genom. Wei 1 5 2013 10.7150/jgen.3769 Cellular and molecular implications of mature adipocyte dedifferentiation 

  60. J. Cell. Biochem. Nobusue 2009 Establishment and characteristics of porcine preadipocyte cell lines derived from mature adipocytes 

  61. BioMed Res. Int. Peng 2015 1 2015 Phenotypic and functional properties of porcine dedifferentiated fat cells during the long-term culture in vitro 

  62. Tissue Cell Wei 44 385 2012 10.1016/j.tice.2012.08.001 Bovine mature adipocytes readily return to a proliferative state 

  63. Adipocyte Wei 2 148 2013 10.4161/adip.24589 Bovine dedifferentiated adipose tissue (DFAT) cells 

  64. Poult Sci Cui 97 3691 2018 10.3382/ps/pey023 Method using a co-culture system with high-purity intramuscular preadipocytes and satellite cells from chicken pectoralis major muscle 

  65. Can. J. Vet. Res. Zhang 80 309 2016 Identification and characterization of pig adipose-derived progenitor cells 

  66. J. Cell. Physiol. Vacanti 205 194 2005 10.1002/jcp.20376 Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture 

  67. Comp. Biochem. Physiol. B Biochem. Mol. Biol. Sanosaka 149 285 2008 10.1016/j.cbpb.2007.09.019 A combination of octanoate and oleate promotes in vitro differentiation of porcine intramuscular adipocytes 

  68. Genet. Mol. Res. Sampaio 14 53 2015 10.4238/2015.January.15.7 Generation of bovine (Bos indicus) and buffalo (Bubalus bubalis) adipose tissue derived stem cells: isolation, characterization, and multipotentiality 

  69. Appl. Biochem. Biotechnol. Lu 174 719 2014 10.1007/s12010-014-1128-3 Isolation and characterization of adipose-derived mesenchymal stem cells (ADSCs) from cattle 

  70. Biochem. Biophys. Res. Commun. Aso 213 369 1995 10.1006/bbrc.1995.2141 A preadipocyte clonal line from bovine intramuscular adipose tissue: nonexpression of GLUT-4 protein during adipocyte differentiation 

  71. J. Anim. Sci. Lengi 88 1999 2010 10.2527/jas.2009-2439 Factors influencing the differentiation of bovine preadipocytes in vitro1 

  72. Adipocyte Jurek 9 35 2020 10.1080/21623945.2020.1720480 Optimizing adipogenic transdifferentiation of bovine mesenchymal stem cells: a prominent role of ascorbic acid in FABP4 induction 

  73. J. Dairy Sci. Strieder-Barboza 102 3622 2019 10.3168/jds.2018-15626 Technical note: bovine adipocyte and preadipocyte co-culture as an efficient adipogenic model 

  74. Mehta 111 2019 Myogenesis Methods Protoc. Adipogenesis from bovine precursors 

  75. Exp. Ther. Med. Lu 2018 In vitro culture and biological properties of broiler adipose-derived stem cells 

  76. PLoS One Wang 13 2018 The differentiation of preadipocytes and gene expression related to adipogenesis in ducks (Anas platyrhynchos) 

  77. Stem Cell Res. Ther. Liao 10 306 2019 10.1186/s13287-019-1404-9 Antioxidants inhibit cell senescence and preserve stemness of adipose tissue-derived stem cells by reducing ROS generation during long-term in vitro expansion 

  78. Stem Cell. Int. Welter 2013 1 2013 10.1155/2013/806525 Assessing adipogenic potential of mesenchymal stem cells: a rapid three-dimensional culture screening technique 

  79. Eur. J. Med. Res. Schneider 22 17 2017 10.1186/s40001-017-0258-9 Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine 

  80. Stem Cell Res. Ther. Czapla 10 235 2019 10.1186/s13287-019-1331-9 The effect of culture media on large-scale expansion and characteristic of adipose tissue-derived mesenchymal stromal cells 

  81. Tissue Eng. C Methods D'Andrea 14 233 2008 10.1089/ten.tec.2008.0108 Large-scale production of human adipose tissue from stem cells: a new tool for regenerative medicine and tissue banking 

  82. Plast. Reconstr. Surg. Sasahara 144 644 2019 10.1097/PRS.0000000000005913 Adipose-derived stem cells and ceiling culture-derived preadipocytes cultured from subcutaneous fat tissue differ in their epigenetic characteristics and osteogenic potential 

  83. Am. J. Physiol. Regul. Integr. Comp. Physiol. Tchkonia 282 R1286 2002 10.1152/ajpregu.00653.2001 Fat depot origin affects adipogenesis in primary cultured and cloned human preadipocytes 

  84. Cell Death Dis. Yuan 5 104 2019 10.1038/s41420-019-0184-4 A six-inhibitor culture medium for improving naïve-type pluripotency of porcine pluripotent stem cells 

  85. Cell Cycle Li 17 2547 2018 10.1080/15384101.2018.1548790 Generation of transgene-free porcine intermediate type induced pluripotent stem cells 

  86. Stem Cell Rep. Choi 13 221 2019 10.1016/j.stemcr.2019.05.028 Chemically defined media can maintain pig pluripotency network in vitro 

  87. Proc. Natl. Acad. Sci. U. S. A. Bogliotti 115 2090 2018 10.1073/pnas.1716161115 Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts 

  88. Sci. Rep. Soto 11 11045 2021 10.1038/s41598-021-90422-0 Simplification of culture conditions and feeder-free expansion of bovine embryonic stem cells 

  89. Stem Cell. Int. Zhang 2018 2018 An alternative method for long-term culture of chicken embryonic stem cell in vitro 

  90. Nat. Cell Biol. Ahfeldt 14 209 2012 10.1038/ncb2411 Programming human pluripotent stem cells into white and brown adipocytes 

  91. PLoS One Wang 12 2017 Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR 

  92. J. Lipid Res. Morganstein 49 679 2008 10.1194/jlr.D700029-JLR200 Conditionally immortalized white preadipocytes: a novel adipocyte models 

  93. Cell Death Differ. Darimont 10 1025 2003 10.1038/sj.cdd.4401273 Reconstitution of telomerase activity combined with HPV-E7 expression allow human preadipocytes to preserve their differentiation capacity after immortalization 

  94. Poult Sci Lee 100 101057 2021 10.1016/j.psj.2021.101057 Research Note: potential usage of DF-1 cell line as a new cell model for avian adipogenesis 

  95. In Vitro Cell. Dev. Biol. Anim. Wang 45 584 2009 10.1007/s11626-009-9231-4 Osteogenic and adipogenic differentiation potential of an immortalized fibroblast-like cell line derived from porcine peripheral blood 

  96. Biotechnol. Lett. Yin 32 195 2010 10.1007/s10529-009-0142-y In vitro myogenic and adipogenic differentiation model of genetically engineered bovine embryonic fibroblast cell lines 

  97. Cell Green 3 127 1974 10.1016/0092-8674(74)90116-0 An established pre-adipose cell line and its differentiation in culture 

  98. J. Mol. Cell Biol. Wu 1 46 2009 10.1093/jmcb/mjp003 Generation of pig induced pluripotent stem cells with a drug-inducible system 

  99. Cell Res. Han 21 1509 2011 10.1038/cr.2011.125 Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells 

  100. J. Biol. Chem. Honda 285 31362 2010 10.1074/jbc.M110.150540 Generation of induced pluripotent stem cells in rabbits 

  101. PLoS One Li 6 2011 Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors 

  102. ELife Rosselló 2 2013 10.7554/eLife.00036 Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species 

  103. J. Anim. Sci. Su 98 2020 10.1093/jas/skaa343 Induced pluripotent stem cells from farm animals 

  104. Adipocyte Wei 2 122 2013 10.4161/adip.23784 Dedifferentiated adipocyte-derived progeny cells (DFAT cells): potential stem cells of adipose tissue 

  105. Differentiation Sugihara 31 42 1986 10.1111/j.1432-0436.1986.tb00381.x Primary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties 

  106. J. Endocrinol. Zhang 164 119 2000 10.1677/joe.0.1640119 Ceiling culture of mature human adipocytes: use in studies of adipocyte functions 

  107. Yale J. Biol. Med. Adebonojo 48 9 1975 Studies on human adipose cells in culture: relation of cell size and cell multiplication to donor age 

  108. J. Cell. Physiol. Matsumoto 215 210 2008 10.1002/jcp.21304 Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential 

  109. Cell Struct. Funct. Oki 33 211 2008 10.1247/csf.08038 Mature adipocyte-derived dedifferentiated fat cells can trans-differentiate into osteoblasts in vitro and in vivo only by all-trans retinoic acid 

  110. Biochem. Biophys. Res. Commun. Kazama 377 780 2008 10.1016/j.bbrc.2008.10.046 Mature adipocyte-derived dedifferentiated fat cells can transdifferentiate into skeletal myocytes in vitro 

  111. J. Mol. Cell. Cardiol. Jumabay 47 565 2009 10.1016/j.yjmcc.2009.08.004 Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats 

  112. J. Urol. Sakuma 182 355 2009 10.1016/j.juro.2009.02.103 Mature, adipocyte derived, dedifferentiated fat cells can differentiate into smooth muscle-like cells and contribute to bladder tissue regeneration 

  113. Gene Cell. Oki 2021 Effect of volatile fatty acids on adipocyte differentiation in bovine dedifferentiated fat (DFAT) cells in vitro 

  114. Compr. Rev. Food Sci. Food Saf. O'Neill 20 686 2021 10.1111/1541-4337.12678 Considerations for the development of cost‐effective cell culture media for cultivated meat production 

  115. Annu. Rev. Biomed. Eng. Parekkadan 12 87 2010 10.1146/annurev-bioeng-070909-105309 Mesenchymal stem cells as therapeutics 

  116. Pakistan J. Zool. Wang 53 2020 10.17582/journal.pjz/20190718150746 BMP4 and rosiglitazone improves adipogenesis of bovine fetal muscle derived progenitor cells 

  117. Stem Cell. Int. Zhang 2020 2020 Adipose-derived stem cells: current applications and future directions in the regeneration of multiple tissues 

  118. Animal Li 14 312 2020 10.1017/S175173111900209X Review: enhancing intramuscular fat development via targeting fibro-adipogenic progenitor cells in meat animals 

  119. Front. Physiol. Biferali 10 1074 2019 10.3389/fphys.2019.01074 Fibro-adipogenic progenitors cross-talk in skeletal muscle: the social network 

  120. Method Mol. Biol. Clifton NJ Judson 1668 93 2017 10.1007/978-1-4939-7283-8_7 Isolation, culture, and differentiation of fibro/adipogenic progenitors (FAPs) from skeletal muscle 

  121. J. Lipid Res. Cawthorn 53 227 2012 10.1194/jlr.R021089 Adipose tissue stem cells meet preadipocyte commitment: going back to the future 

  122. Cells Tissues Organs Zhao 195 414 2012 10.1159/000329254 The effect of serial passaging on the proliferation and differentiation of bovine adipose-derived stem cells 

  123. JoVE J. Vis. Exp. Chen 2016 10.3791/53886-v Isolation and differentiation of adipose-derived stem cells from porcine subcutaneous adipose tissues 

  124. J. Anim. Sci. Lengi 88 1999 2010 10.2527/jas.2009-2439 Factors influencing the differentiation of bovine preadipocytes in vitro 

  125. Exp. Ther. Med. Lu 16 2399 2018 In vitro culture and biological properties of broiler adipose-derived stem cells 

  126. Biotechnol. Appl. Biochem. Wang 51 159 2008 10.1042/BA20070201 Optimizing proliferation and characterization of multipotent stem cells from porcine adipose tissue 

  127. Proc. Natl. Acad. Sci. Unit. States Am. Hadden 114 5647 2017 10.1073/pnas.1618239114 Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels 

  128. Nat. Rev. Mol. Cell Biol. Vining 18 728 2017 10.1038/nrm.2017.108 Mechanical forces direct stem cell behaviour in development and regeneration 

  129. Cell Engler 126 677 2006 10.1016/j.cell.2006.06.044 Matrix elasticity directs stem cell lineage specification 

  130. Nat. Mater. Huebsch 9 518 2010 10.1038/nmat2732 Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate 

  131. Eng Beijing China Yang 3 36 2017 Biophysical regulation of cell behavior-cross talk between substrate stiffness and nanotopography 

  132. Sci Data Liu 6 190031 2019 10.1038/sdata.2019.31 Single-cell RNA-seq of cultured human adipose-derived mesenchymal stem cells 

  133. Reprod. Fertil. Dev. Navarro 32 11 2020 10.1071/RD19272 Livestock pluripotency is finally captured in vitro 

  134. Stem Cell Rep. Pawlowski 8 803 2017 10.1016/j.stemcr.2017.02.016 Inducible and deterministic forward programming of human pluripotent stem cells into neurons, skeletal myocytes, and oligodendrocytes 

  135. Animals Yu 10 818 2020 10.3390/ani10050818 Isolation and identification of bovine preadipocytes and screening of MicroRNAs associated with adipogenesis 

  136. Proc. Natl. Acad. Sci. Unit. States Am. Zhao 118 2021 Establishment of bovine expanded potential stem cells 

  137. Theriogenology Brevini 68 S206 2007 10.1016/j.theriogenology.2007.05.043 Porcine embryonic stem cells: facts, challenges and hopes 

  138. Stem Cell. Mohsen‐Kanson 32 1459 2014 10.1002/stem.1607 Differentiation of human induced pluripotent stem cells into Brown and white adipocytes: role of Pax3 

  139. Carcinogenesis Trott 16 193 1995 10.1093/carcin/16.2.193 Mechanisms involved in the immortalization of mammalian cells by ionizing radiation and chemical carcinogens 

  140. Foster 1996 Immortalized Cell Lines for Virus Growth 

  141. EMBO Rep. Schmidt 21 2020 10.15252/embr.202050680 The evolving landscape around genome editing in agriculture 

  142. FASEB J Ramunas 29 1930 2015 10.1096/fj.14-259531 Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells 

  143. Cell Stem Cell Nagpal 26 896 2020 10.1016/j.stem.2020.03.016 Small-molecule PAPD5 inhibitors restore telomerase activity in patient stem cells 

  144. Nature Yamanaka 465 704 2010 10.1038/nature09229 Nuclear reprogramming to a pluripotent state by three approaches 

  145. FEBS Lett. Taura 583 1029 2009 10.1016/j.febslet.2009.02.031 Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells 

  146. Stem Cell. Dev. Burrell 28 1264 2019 10.1089/scd.2019.0111 Stirred suspension bioreactor culture of porcine induced pluripotent stem cells 

  147. Front. Cell. Neurosci. Re 12 2018 10.3389/fncel.2018.00321 Improved generation of induced pluripotent stem cells from hair derived keratinocytes - a tool to study neurodevelopmental disorders as ADHD 

  148. Stem Cell. Int. Steinle 2019 2019 Generation of iPSCs by nonintegrative RNA-based reprogramming techniques: benefits of self-replicating RNA versus synthetic mRNA 

  149. Transgenic Res. Soto 25 289 2016 10.1007/s11248-016-9929-5 Pluripotent stem cells and livestock genetic engineering 

  150. World J. Stem Cell. Pessôa 11 491 2019 10.4252/wjsc.v11.i8.491 Induced pluripotent stem cells throughout the animal kingdom: availability and applications 

  151. J. Anim. Sci. Biotechnol. Ogorevc 7 10 2016 10.1186/s40104-016-0070-3 Cellular reprogramming in farm animals: an overview of iPSC generation in the mammalian farm animal species 

  152. Fuet 211 2017 Avian Reptil. Dev. Biol. Methods Protoc. Chicken induced pluripotent stem cells: establishment and characterization 

  153. Cell Res. Bao 21 600 2011 10.1038/cr.2011.6 Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors 

  154. Cell. Reprogr. Hall 14 204 2012 10.1089/cell.2011.0089 Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells 

  155. FEBS Open Bio. Chen 9 1109 2019 10.1002/2211-5463.12640 Bone morphogenetic protein 4 regulates immortalized chicken preadipocyte proliferation by promoting G1/S cell cycle progression 

  156. J. Cell. Mol. Immunol. Wn 28 944 2012 [Effect of perilipin 1 on chicken preadipocyte lipid accumulation]. Xi bao Yu fen zi mian Yi Xue za zhi chin 

  157. Front. Cell Dev. Biol. Sun 8 2020 10.3389/fcell.2020.00349 RXRα positively regulates expression of the chicken PLIN1 gene in a PPARγ-independent manner and promotes adipogenesis 

  158. Cell Tontonoz 79 1147 1994 10.1016/0092-8674(94)90006-X Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor 

  159. Respir. Res. Liu 20 281 2019 10.1186/s12931-019-1253-1 Targeted regulation of fibroblast state by CRISPR-mediated CEBPA expression 

  160. Trends Food Sci. Technol. Tomiyama 104 144 2020 10.1016/j.tifs.2020.07.019 Bridging the gap between the science of cultured meat and public perceptions 

  161. AquAdvantage Salmon Approval Letter and Appendix 2020 US Food Drug Adm 

  162. 2020 FDA Approves First-Of-Its-Kind Intentional Genomic Alteration in Line of Domestic Pigs for Both Human Food, Potential Therapeutic Uses 

  163. Cytotechnology Tsao 37 189 2001 10.1023/A:1020555310558 Development and improvement of a serum-free suspension process for the production of recombinant adenoviral vectors using HEK293 cells 

  164. Sci. Rep. Malm 10 18996 2020 10.1038/s41598-020-76137-8 Evolution from adherent to suspension: systems biology of HEK293 cell line development 

  165. Biotechnol. Prog. Taticek 17 676 2001 10.1021/bp010061g Comparison of growth and recombinant protein expression in two different insect cell lines in attached and suspension culture 

  166. Method Mol. Biol. Clifton NJ Chen 1283 13 2015 10.1007/7651_2014_118 The suspension culture of undifferentiated human pluripotent stem cells using spinner flasks 

  167. Biotechnol. Bioeng. Backer 32 993 1988 10.1002/bit.260320807 Large-scale production of monoclonal antibodies in suspension culture 

  168. J. Biosci. Bioeng. Pörtner 100 235 2005 10.1263/jbb.100.235 Bioreactor design for tissue engineering 

  169. Biotechnol. Bioeng. Hanga 117 3029 2020 10.1002/bit.27469 Bioprocess development for scalable production of cultivated meat 

  170. N. Biotech. Rodrigues 29 402 2012 10.1016/j.nbt.2011.10.006 Wave characterization for mammalian cell culture: residence time distribution 

  171. Cytotechnology Singh 30 149 1999 10.1023/A:1008025016272 Disposable bioreactor for cell culture using wave-induced agitation 

  172. Cytotechnology Varley 29 177 1999 10.1023/A:1008008021481 Reactor design for large scale suspension animal cell culture 

  173. Mullen 2020 In Vitro Avian Food Product 

  174. Chem. Eng. Sci. Li 211 115269 2020 10.1016/j.ces.2019.115269 A conceptual air-lift reactor design for large scale animal cell cultivation in the context of in vitro meat production 

  175. Stem Cell. Int. Allen 2019 2019 Serum-free culture of human mesenchymal stem cell aggregates in suspension bioreactors for tissue engineering applications 

  176. Biotechnol. Prog. Alimperti 30 974 2014 10.1002/btpr.1904 Serum-free spheroid suspension culture maintains mesenchymal stem cell proliferation and differentiation potential 

  177. Nat. Biotechnol. Steiner 28 361 2010 10.1038/nbt.1616 Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension 

  178. Biotechnol. Bioeng. Nampe 114 2109 2017 10.1002/bit.26334 Impact of fluidic agitation on human pluripotent stem cells in stirred suspension culture 

  179. Regen. Ther. Yabe 10 69 2019 10.1016/j.reth.2018.11.003 Induction of functional islet-like cells from human iPS cells by suspension culture 

  180. Cytotherapy Wang 16 485 2014 10.1016/j.jcyt.2013.07.015 Characterization and evaluation of the differentiation ability of human adipose-derived stem cells growing in scaffold-free suspension culture 

  181. Sci. Rep. Klingelhutz 8 1 2018 10.1038/s41598-017-19024-z Scaffold-free generation of uniform adipose spheroids for metabolism research and drug discovery 

  182. Dev. Cell McBeath 6 483 2004 10.1016/S1534-5807(04)00075-9 Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment 

  183. Tissue Eng Part A Varley 23 522 2017 10.1089/ten.tea.2016.0357 Effect of rotation on scaffold motion and cell growth in rotating bioreactors 

  184. J. Biol. Eng. Nogueira 13 74 2019 10.1186/s13036-019-0204-1 Strategies for the expansion of human induced pluripotent stem cells as aggregates in single-use Vertical-WheelTM bioreactors 

  185. Cancer Res. Sutherland 41 2980 1981 Spheroids in cancer research 

  186. Tissue Eng. C Methods Daquinag 19 336 2013 10.1089/ten.tec.2012.0198 Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles 

  187. Sci. Rep. Muller 9 1 2019 10.1038/s41598-019-43624-6 Human adipose stromal-vascular fraction self-organizes to form vascularized adipose tissue in 3D cultures 

  188. In Vitro Cell. Dev. Biol. Anim. Ingram 33 459 1997 10.1007/s11626-997-0064-8 Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor 

  189. Am. J. Physiol. Ren. Physiol. Hammond 281 F12 2001 10.1152/ajprenal.2001.281.1.F12 Optimized suspension culture: the rotating-wall vessel 

  190. J. Biotechnol. Liu 124 592 2006 10.1016/j.jbiotec.2006.01.020 Ex vivo expansion of hematopoietic stem cells derived from umbilical cord blood in rotating wall vessel 

  191. Biotechnol. Bioeng. Gerecht-Nir 86 493 2004 10.1002/bit.20045 Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation 

  192. In Vitro Cell. Dev. Biol. Anim. Frye 42 109 2006 10.1290/0509055.1 Three-dimensional adipose tissue model using low shear bioreactors 

  193. Tissue Eng. C Methods Frith 16 735 2010 10.1089/ten.tec.2009.0432 Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential 

  194. Bioproc. Biosyst. Eng. Song 38 1527 2015 10.1007/s00449-015-1395-6 Numberical simulation of fluid flow and three-dimensional expansion of tissue engineering seed cells in large scale inside a novel rotating wall hollow fiber membrane bioreactor 

  195. Stem Cell Res. Ther. Borys 12 55 2021 10.1186/s13287-020-02109-4 Overcoming bioprocess bottlenecks in the large-scale expansion of high-quality hiPSC aggregates in vertical-wheel stirred suspension bioreactors 

  196. RPM. Microgravity Sci Technol Borst 21 287 2009 10.1007/s12217-008-9043-2 Technology and developments for the random positioning machine 

  197. Adv. Space Res. van Loon 39 1161 2007 10.1016/j.asr.2007.02.016 Some history and use of the random positioning machine, RPM, in gravity related research 

  198. Biomaterials Young 34 8581 2013 10.1016/j.biomaterials.2013.07.103 Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue 

  199. Biotechnol. Bioeng. Chandler 108 1683 2011 10.1002/bit.23079 Stiffness of photocrosslinked RGD-alginate gels regulates adipose progenitor cell behavior 

  200. Process Biochem. Turner 59 312 2017 10.1016/j.procbio.2017.02.003 Adipogenic differentiation of human adipose-derived stem cells grown as spheroids 

  201. Front Nutr. Bellani 7 2020 10.3389/fnut.2020.575146 Scale-up technologies for the manufacture of adherent cells 

  202. Stem Cell Rep. Tohyama 9 1406 2017 10.1016/j.stemcr.2017.08.025 Efficient large-scale 2D culture system for human induced pluripotent stem cells and differentiated cardiomyocytes 

  203. Front Nutr. Bodiou 7 2020 10.3389/fnut.2020.00010 Microcarriers for upscaling cultured meat production 

  204. Tissue Eng. B Rev. Martin 17 71 2011 10.1089/ten.teb.2010.0559 Microcarriers and their potential in tissue regeneration 

  205. Biochem. Biophys. Res. Commun. Nold 430 325 2013 10.1016/j.bbrc.2012.11.001 Good manufacturing practice-compliant animal-free expansion of human bone marrow derived mesenchymal stroma cells in a closed hollow-fiber-based bioreactor 

  206. Barckhausen 389 2016 Mesenchymal Stem Cells Methods Protoc. GMP-compliant expansion of clinical-grade human mesenchymal stromal/stem cells using a closed hollow fiber bioreactor 

  207. Stem Cell. Int. Paccola Mesquita 2019 2019 Laminin as a potent substrate for large-scale expansion of human induced pluripotent stem cells in a closed cell expansion system 

  208. Cell Schive 6 e2519 2018 Automated isolation and expansion of human adipose tissue-derived stem cells for a seamless translation into clinical trials 

  209. Biofabrication Kumar 7 2015 10.1088/1758-5090/7/4/044103 Large scale industrialized cell expansion: producing the critical raw material for biofabrication processes 

  210. Pörtner 353 2007 Anim. Cell Biotechnol. Methods Protoc. Cultivation of mammalian cells in fixed-bed reactors 

  211. Biotechnol. Prog. Mizukami 29 568 2013 10.1002/btpr.1707 Efficient expansion of mesenchymal stromal cells in a disposable fixed bed culture system 

  212. 羽生雄毅 2017 Growth Induction System, Growth Induction Control Apparatus, Growth Induction Control Method, and Growth Induction Control Program 

  213. ACS Appl. Mater. Interfaces Miotto 9 41131 2017 10.1021/acsami.7b09809 Developing a continuous bioprocessing approach to stromal cell manufacture 

  214. Biofabrication Henriksson 9 2017 10.1088/1758-5090/aa5c1c Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds 

  215. Tissue Eng Part A Turner 21 1837 2015 10.1089/ten.tea.2014.0531 Three-Dimensional spheroid cell model of in vitro adipocyte inflammation 

  216. Acta Biomater. Louis 84 194 2019 10.1016/j.actbio.2018.11.048 3D collagen microfibers stimulate the functionality of preadipocytes and maintain the phenotype of mature adipocytes for long term cultures 

  217. Cell. Mol. Bioeng. Lei 7 172 2014 10.1007/s12195-014-0333-z Developing defined and scalable 3D culture systems for culturing human pluripotent stem cells at high densities 

  218. Tissue Eng. C Methods Choi 16 387 2010 10.1089/ten.tec.2009.0276 Fabrication of porous extracellular matrix scaffolds from human adipose tissue 

  219. Free Radic. Biol. Med. Place 113 311 2017 10.1016/j.freeradbiomed.2017.10.003 Limitations of oxygen delivery to cells in culture: an underappreciated problem in basic and translational research 

  220. Tissue Eng Part A Coyle 25 620 2019 10.1089/ten.tea.2018.0163 The effects of metabolic substrate availability on human adipose-derived stem cell spheroid survival 

  221. J. R. Soc. Interface Murphy 14 20160851 2017 10.1098/rsif.2016.0851 Measurement of oxygen tension within mesenchymal stem cell spheroids 

  222. PLoS One Tiruvannamalai-Annamalai 9 2014 10.1371/journal.pone.0084287 A glycosaminoglycan based, modular tissue scaffold system for rapid assembly of perfusable, high cell density, engineered tissues 

  223. Tissue Eng Part A Chung 15 1391 2008 10.1089/ten.tea.2008.0344 Injectable cellular aggregates prepared from biodegradable porous microspheres for adipose tissue engineering 

  224. Ann. Med. Fajas 35 79 2003 10.1080/07853890310009999 Adipogenesis: a cross-talk between cell proliferation and cell differentiation 

  225. Methods Enzymol. Lee 538 49 2014 10.1016/B978-0-12-800280-3.00004-9 Optimal protocol for the differentiation and metabolic analysis of human adipose stromal cells 

  226. Cell. Mol. Biol. Lett. Pu 22 6 2017 10.1186/s11658-017-0037-1 PPARγ agonist through the terminal differentiation phase is essential for adipogenic differentiation of fetal ovine preadipocytes 

  227. Tissue Eng. C Methods Gerlach 18 54 2012 10.1089/ten.tec.2011.0216 Adipogenesis of human adipose-derived stem cells within three-dimensional hollow fiber-based bioreactors 

  228. Biotechnol. Bioeng. Li 91 688 2005 10.1002/bit.20536 Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products 

  229. Biochem. Eng. J. Liu 33 1 2007 10.1016/j.bej.2006.08.005 Optimization of serum free medium for cord blood mesenchymal stem cells 

  230. Cytotechnology Kolkmann 72 111 2020 10.1007/s10616-019-00361-y Serum-free media for the growth of primary bovine myoblasts 

  231. J. Cell. Physiol. Zhang 2019 A novel chemically defined serum- and feeder-free medium for undifferentiated growth of porcine pluripotent stem cells 

  232. Cell Death Dis. Ma 4 1 2018 Preserving self-renewal of porcine pluripotent stem cells in serum-free 3i culture condition and independent of LIF and b-FGF cytokines 

  233. J. Anim. Sci. Boone 78 885 2000 10.2527/2000.784885x Culture of porcine stromal-vascular cells in serum-free medium: differential action of various hormonal agents on adipose conversion 

  234. Eur. J. Biochem. Broad 135 33 1983 10.1111/j.1432-1033.1983.tb07614.x Growth and adipose differentiation of sheep preadipocyte fibroblasts in serum-free medium 

  235. Livest. Sci. Bell 126 38 2009 10.1016/j.livsci.2009.05.015 Profitability of bovine somatotropin administration to increase first insemination conception rate in seasonal dairy herds with heat stress 

  236. J. Dairy Sci. Marsh 71 2944 1988 10.3168/jds.S0022-0302(88)79892-6 Economics of recombinant bovine somatotropin use in individual dairy herds 

  237. Biotechnol. Bioeng. Bosnakovski 93 1152 2006 10.1002/bit.20828 Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis 

  238. Bioresour. Biopr. Ho 8 93 2021 10.1186/s40643-021-00443-w Applications and analysis of hydrolysates in animal cell culture 

  239. Front. Bioeng. Biotechnol. Ng 8 1068 2020 10.3389/fbioe.2020.564667 Chlorella vulgaris extract as a serum replacement that enhances mammalian cell growth and protein expression 

  240. Stem Cell. Int. Saud 2019 2019 A review on the effect of plant extract on mesenchymal stem cell proliferation and differentiation 

  241. Acta Astronaut. Benjaminson 51 879 2002 10.1016/S0094-5765(02)00033-4 In vitro edible muscle protein production system (MPPS): stage 1, fish 

  242. Reprod. Fertil. Dev. George 21 587 2009 10.1071/RD08147 Plant protein hydrolysates (plant peptones) as substitutes for animal proteins in embryo culture medium 

  243. ACS Biomater. Sci. Eng. Rubert Pérez 3 2166 2017 10.1021/acsbiomaterials.7b00347 Mimicking the bioactivity of fibroblast growth factor-2 using supramolecular nanoribbons 

  244. Food Funct. Andreassen 11 2477 2020 10.1039/C9FO02690H Screening of by-products from the food industry as growth promoting agents in serum-free media for skeletal muscle cell culture 

  245. Obes Silver Spring Md Lee 20 2334 2012 10.1038/oby.2012.116 A modified protocol to maximize differentiation of human preadipocytes and improve metabolic phenotypes 

  246. Comp. Biochem. Physiol. Mol. Integr. Physiol. Matsubara 151 511 2008 10.1016/j.cbpa.2008.07.002 Fatty acids but not dexamethasone are essential inducers for chick adipocyte differentiation in vitro 

  247. Internet J. Endocrinol. Mellouk 2018 2018 Chicken is a useful model to investigate the role of adipokines in metabolic and reproductive diseases 

  248. Int. J. Biol. Sci. Dodson 6 691 2010 10.7150/ijbs.6.691 Lipid metabolism, adipocyte depot physiology and utilization of meat animals as experimental models for metabolic research 

  249. J. Nutr. Bergen 135 2499 2005 10.1093/jn/135.11.2499 Comparative aspects of lipid metabolism: impact on contemporary research and use of animal models 

  250. Sci. Rep. Arimochi 6 26791 2016 10.1038/srep26791 Differentiation of preadipocytes and mature adipocytes requires PSMB8 

  251. J. Anim. Sci. García-Rojas 88 1801 2010 10.2527/jas.2009-2579 Induction of peroxisomal proliferator-activated receptor and peroxisomal proliferator-activated receptor coactivator 1 by unsaturated fatty acids, retinoic acid, and carotenoids in preadipocytes obtained from bovine white adipose tissue1,2 

  252. Foods Risner 10 3 2021 10.3390/foods10010003 Preliminary techno-economic assessment of animal cell-based meat 

  253. Bioproc. Biosyst. Eng. Nath 40 123 2017 10.1007/s00449-016-1680-z Culture medium refinement by dialysis for the expansion of human induced pluripotent stem cells in suspension culture 

  254. Sci. Rep. Haraguchi 7 41594 2017 10.1038/srep41594 Thicker three-dimensional tissue from a “symbiotic recycling system” combining mammalian cells and algae 

  255. Biotechnol. Lett. Haraguchi 2021 10.1007/s10529-021-03106-0 Three-dimensional tissue fabrication system by co-culture of microalgae and animal cells for production of thicker and healthy cultured food 

  256. Genovese 2019 Compositions and Methods for Increasing the Efficiency of Cell Cultures Used for Food Production 

  257. Metab. Eng. Mulukutla 54 54 2019 10.1016/j.ymben.2019.03.001 Metabolic engineering of Chinese hamster ovary cells towards reduced biosynthesis and accumulation of novel growth inhibitors in fed-batch cultures 

  258. Biotechnol. Adv. Fischer 33 1878 2015 10.1016/j.biotechadv.2015.10.015 The art of CHO cell engineering: a comprehensive retrospect and future perspectives 

  259. Cell Death Dis. Li 9 1 2018 10.1038/s41419-018-0863-8 A fully defined static suspension culture system for large-scale human embryonic stem cell production 

  260. J. Tissue Eng. Minteer 6 2015 10.1177/2041731415579215 Analysis of type II diabetes mellitus adipose-derived stem cells for tissue engineering applications 

  261. Krishnan 43 2014 Commer. Plant-Prod. Recomb. Protein Prod. Case Stud. TrypZeanTM: an animal-free alternative to bovine trypsin 

  262. Mol. Reprod. Dev. Bajpai 75 818 2008 10.1002/mrd.20809 Efficient propagation of single cells accutase-dissociated human embryonic stem cells 

  263. Rourou 383 2012 Proc. 21st Annu. Meet. Eur. Soc. Anim. Cell Technol. ESACT Dublin Irel. June 7-10 2009 A protocol for cell detachment of vero cells grown under fully animal component free conditions and on cytodex 1 microcarriers 

  264. Bioresour. Technol. Mirmohseni 121 212 2012 10.1016/j.biortech.2012.06.067 Chitosan hollow fibers as effective biosorbent toward dye: preparation and modeling 

  265. Biopolymers Modrzejewska 73 61 2004 10.1002/bip.10510 Chitosan hollow fiber membranes 

  266. Int. J. Biol. Sci. Yan 14 1196 2018 10.7150/ijbs.25023 Scalable generation of mesenchymal stem cells from human embryonic stem cells in 3D 

  267. Stem Cell. Dev. Scott 20 1793 2011 10.1089/scd.2011.0040 Current methods of adipogenic differentiation of mesenchymal stem cells 

  268. Biochim Biophys Acta BBA - Mol Basis Dis Varga 1812 1007 2011 10.1016/j.bbadis.2011.02.014 PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation 

  269. J. Dairy Sci. Yanting 101 1601 2018 10.3168/jds.2017-13312 Dose- and type-dependent effects of long-chain fatty acids on adipogenesis and lipogenesis of bovine adipocytes 

  270. J. Anim. Sci. Li 97 4114 2019 10.1093/jas/skz269 Oleic acid in the absence of a PPARγ agonist increases adipogenic gene expression in bovine muscle satellite cells1 

  271. Nutr. Res. Ding 23 1059 2003 10.1016/S0271-5317(03)00081-2 Effect of unsaturated fatty acids on porcine adipocyte differentiation 

  272. Biosci. Rep. Shang 34 2014 10.1042/BSR20130120 Oleate promotes differentiation of chicken primary preadipocytes in vitro 

  273. Biosci. Rep. Cheng 36 2016 10.1042/BSR20160049 Cocktail supplement with rosiglitazone: a novel inducer for chicken preadipocyte differentiation in vitro 

  274. Cureus Sprenger 13 2021 Induction of adipogenic genes by novel serum-free conditions from pre-adipocyte 3T3-L1 and ST2 cells 

  275. Stem Cell Res. Ther. Yuan 10 2019 10.1186/s13287-019-1141-0 Fast Adipogenesis Tracking System (FATS)-a robust, high-throughput, automation-ready adipogenesis quantification technique 

  276. Proc. Natl. Acad. Sci. Unit. States Am. Huang 106 12670 2009 10.1073/pnas.0906266106 BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage 

  277. J. Funct. Foods Chen 73 104135 2020 10.1016/j.jff.2020.104135 Taiwanese green propolis ethanol extract promotes adipocyte differentiation and alleviates TNF-α-mediated downregulation of adiponectin expression 

  278. Front Nutr. Boudreau 6 18 2019 10.3389/fnut.2019.00018 Distinct fractions of an artemisia scoparia extract contain compounds with novel adipogenic bioactivity 

  279. Bioorg. Med. Chem. Ahn 26 2018 10.1016/j.bmc.2018.01.019 2-Formyl-komarovicine promotes adiponectin production in human mesenchymal stem cells through PPARγ partial agonism 

  280. Bioorg. Med. Chem. Kim 26 2018 10.1016/j.bmc.2018.10.010 Kojyl cinnamate esters are peroxisome proliferator-activated receptor α/γ dual agonists 

  281. Bioorg. Med. Chem. Lett Rho 24 2141 2014 10.1016/j.bmcl.2014.03.034 Kojyl cinnamate ester derivatives promote adiponectin production during adipogenesis in human adipose tissue-derived mesenchymal stem cells 

  282. Proc. Natl. Acad. Sci. Unit. States Am. Aguiari 105 1226 2008 10.1073/pnas.0711402105 High glucose induces adipogenic differentiation of muscle-derived stem cells 

  283. World J. Stem Cell. Casado-Díaz 11 1045 2019 10.4252/wjsc.v11.i12.1045 Influence of olive oil and its components on mesenchymal stem cell biology 

  284. Nat. Prod. Res. Matthaus 28 589 2014 10.1080/14786419.2014.883396 Fatty acid and tocopherol contents of several soybean oils 

  285. Biofabrication Li 11 2018 10.1088/1758-5090/aae5fe Engineering of microscale vascularized fat that responds to perfusion with lipoactive hormones 

  286. J. Biol. Chem. Hadri 279 15130 2004 10.1074/jbc.M312875200 In vitro suppression of the lipogenic pathway by the nonnucleoside reverse transcriptase inhibitor efavirenz in 3T3 and human preadipocytes or adipocytes 

  287. J. Vet. Med. Sci. Wu 62 933 2000 10.1292/jvms.62.933 Effects of lipid-related factors on adipocyte differentiation of bovine stromal-vascular cells in primary culture 

  288. J. Nutr. Han 132 904 2002 10.1093/jn/132.5.904 Octanoate attenuates adipogenesis in 3T3-L1 preadipocytes 

  289. J. Clin. Med. Todorčević 5 2015 10.3390/jcm5010003 The effect of marine derived n-3 fatty acids on adipose tissue metabolism and function 

  290. J. Cell Mol. Med. Wójcik 18 590 2014 10.1111/jcmm.12194 Modulation of adipocyte differentiation by omega-3 polyunsaturated fatty acids involves the ubiquitin-proteasome system 

  291. PLoS One Ghnaimawi 16 2021 10.1371/journal.pone.0249438 DHA but not EPA induces the trans-differentiation of C2C12 cells into white-like adipocytes phenotype 

  292. Nutr. Metab. Song 14 52 2017 10.1186/s12986-017-0209-z DHA increases adiponectin expression more effectively than EPA at relative low concentrations by regulating PPARγ and its phosphorylation at Ser273 in 3T3-L1 adipocytes 

  293. J. Nutr. Kim 136 2965 2006 10.1093/jn/136.12.2965 Docosahexaenoic acid inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 preadipocytes 

  294. Lipids Health Dis. Manickam 9 57 2010 10.1186/1476-511X-9-57 Suppressive actions of eicosapentaenoic acid on lipid droplet formation in 3T3-L1 adipocytes 

  295. Prostaglandins Leukot. Essent. Fatty Acids Barber 89 359 2013 10.1016/j.plefa.2013.07.006 Comparative actions of omega-3 fatty acids on in-vitro lipid droplet formation 

  296. Lipids Health Dis. Li 16 181 2017 10.1186/s12944-017-0574-7 Suppression of adipocyte differentiation and lipid accumulation by stearidonic acid (SDA) in 3T3-L1 cells 

  297. Prostaglandins Leukot. Essent. Fatty Acids Murali 90 13 2014 10.1016/j.plefa.2013.10.002 Differential effects of eicosapentaenoic acid and docosahexaenoic acid in promoting the differentiation of 3T3-L1 preadipocytes 

  298. Biochim. Biophys. Acta Todorcević 1781 326 2008 10.1016/j.bbalip.2008.04.014 Changes in fatty acids metabolism during differentiation of Atlantic salmon preadipocytes; effects of n-3 and n-9 fatty acids 

  299. Biochem. Biophys. Res. Commun. Zhao 450 1446 2014 10.1016/j.bbrc.2014.07.010 Eicosapentaenoic acid promotes thermogenic and fatty acid storage capacity in mouse subcutaneous adipocytes 

  300. PLoS One Riera-Heredia 14 2019 10.1371/journal.pone.0215926 Fatty acids from fish or vegetable oils promote the adipogenic fate of mesenchymal stem cells derived from gilthead sea bream bone potentially through different pathways 

  301. Aquaculture Scholefield 449 58 2015 10.1016/j.aquaculture.2015.02.017 Dynamics of fatty acid metabolism in a cell line from southern bluefin tuna (Thunnus maccoyii) 

  302. Lipids Scholefield 49 703 2014 10.1007/s11745-014-3910-y Cell proliferation and long chain polyunsaturated fatty acid metabolism in a cell line from southern bluefin tuna (Thunnus maccoyii) 

  303. Cells Kallunki 8 2019 10.3390/cells8080796 How to choose the right inducible gene expression system for mammalian studies? 

  304. Proc. Natl. Acad. Sci. U. S. A. Hu 92 9856 1995 10.1073/pnas.92.21.9856 Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha 

  305. J. Anim. Sci. Yu 84 2655 2006 10.2527/jas.2005-645 Porcine peroxisome proliferator-activated receptor induces transdifferentiation of myocytes into adipocytes 

  306. Comp. Biochem. Physiol. Mol. Integr. Physiol. Liu 156 502 2010 10.1016/j.cbpa.2010.04.003 Transdifferentiation of fibroblasts into adipocyte-like cells by chicken adipogenic transcription factors 

  307. J. Cell. Physiol. Ge 236 2592 2021 10.1002/jcp.30017 Myostatin site-directed mutation and simultaneous PPARγ site-directed knockin in bovine genome 

  308. J. Reprod. Dev. Yamanouchi 53 563 2007 10.1262/jrd.18169 Both PPARgamma and C/EBPalpha are sufficient to induce transdifferentiation of goat fetal myoblasts into adipocytes 

  309. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. Gu 35 2021 Targeted overexpression of PPARγ in skeletal muscle by random insertion and CRISPR/Cas9 transgenic pig cloning enhances oxidative fiber formation and intramuscular fat deposition 

  310. Genes Dev. Ren 16 27 2002 10.1101/gad.953802 PPARγ knockdown by engineered transcription factors: exogenous PPARγ2 but not PPARγ1 reactivates adipogenesis 

  311. Genes Dev. Freytag 8 1654 1994 10.1101/gad.8.14.1654 Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells 

  312. Proc. Natl. Acad. Sci. Unit. States Am. Lin 91 8757 1994 10.1073/pnas.91.19.8757 CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program 

  313. Genes Dev. Wu 9 2350 1995 10.1101/gad.9.19.2350 Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis 

  314. Genes Dev. Kim 10 1096 1996 10.1101/gad.10.9.1096 ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism 

  315. Biochem. Biophys. Res. Commun. Zhang 482 352 2017 10.1016/j.bbrc.2016.11.067 Ectopical expression of FABP4 gene can induce bovine muscle-derived stem cells adipogenesis 

  316. PLoS One Huang 7 2012 Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells 

  317. Sci. Rep. Guan 7 43716 2017 10.1038/srep43716 bta-miR-23a involves in adipogenesis of progenitor cells derived from fetal bovine skeletal muscle 

  318. Cell. Physiol. Biochem. Wei 48 2528 2018 10.1159/000492697 ZBTB16 overexpression enhances white adipogenesis and induces Brown-like adipocyte formation of bovine white intramuscular preadipocytes 

  319. Anim. Open Access J. MDPI Li 10 2020 Overexpression of PLIN1 promotes lipid metabolism in bovine adipocytes 

  320. Cell Biosci. Jiang 5 28 2015 10.1186/s13578-015-0016-z KLF13 promotes porcine adipocyte differentiation through PPARγ activation 

  321. BMC Genom. Huang 21 710 2020 10.1186/s12864-020-07120-w Comparative transcriptome analysis reveals that PCK1 is a potential gene affecting IMF deposition in buffalo 

  322. Mol. Cell Biol. Jimenez 27 743 2007 10.1128/MCB.01557-06 Critical role for Ebf1 and Ebf2 in the adipogenic transcriptional cascade 

  323. Cell Stem Cell Wosczyna 2021 10.1016/j.stem.2021.04.008 Targeting microRNA-mediated gene repression limits adipogenic conversion of skeletal muscle mesenchymal stromal cells 

  324. Cell Metabol. Abella 2 239 2005 10.1016/j.cmet.2005.09.003 Cdk4 promotes adipogenesis through PPARγ activation 

  325. Appetite Mohorčich 143 104408 2019 10.1016/j.appet.2019.104408 Cell-cultured meat: lessons from GMO adoption and resistance 

  326. Singh 2020 Policy Issues in Genetically Modified Crops: A Global Perspective 

  327. J. Contr. Release Tavernier 150 238 2011 10.1016/j.jconrel.2010.10.020 mRNA as gene therapeutic: how to control protein expression 

  328. Regul. Toxicol. Pharmacol. Petrick 66 167 2013 10.1016/j.yrtph.2013.03.008 Safety assessment of food and feed from biotechnology-derived crops employing RNA-mediated gene regulation to achieve desired traits: a scientific review 

  329. J. Mol. Med. Moradian 98 1767 2020 10.1007/s00109-020-01956-1 Strategies for simultaneous and successive delivery of RNA 

  330. PLoS One Plews 5 2010 10.1371/journal.pone.0014397 Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach 

  331. Sci. Rep. Matsui 5 15810 2015 10.1038/srep15810 Messenger RNA-based therapeutics for the treatment of apoptosis-associated diseases 

  332. Int. J. Pharm. Zou 389 232 2010 10.1016/j.ijpharm.2010.01.019 Lipid-mediated delivery of RNA is more efficient than delivery of DNA in non-dividing cells 

  333. Stem Cells Transl. Med. Xue 8 112 2018 10.1002/sctm.18-0036 Synthetic mRNAs drive highly efficient iPS cell differentiation to dopaminergic neurons 

  334. Mol. Ther. Warren 27 729 2019 10.1016/j.ymthe.2018.12.009 mRNA-based genetic reprogramming 

  335. Sci. Rep. Goparaju 7 2017 10.1038/srep42367 Rapid differentiation of human pluripotent stem cells into functional neurons by mRNAs encoding transcription factors 

  336. Sci. Rep. Akiyama 8 1189 2018 10.1038/s41598-017-19114-y Efficient differentiation of human pluripotent stem cells into skeletal muscle cells by combining RNA-based MYOD1-expression and POU5F1-silencing 

  337. Stem Cell Rep. Kwon 2020 10.1016/j.stemcr.2020.03.026 Myogenic progenitor cell lineage specification by CRISPR/Cas9-Based transcriptional activators 

  338. Mol Metab. Lundh 6 1313 2017 10.1016/j.molmet.2017.07.001 Bidirectional manipulation of gene expression in adipocytes using CRISPRa and siRNA 

  339. Regen. Med. Sheyn 8 295 2013 10.2217/rme.13.25 Transient overexpression of Pparγ2 and C/ebpα in mesenchymal stem cells induces brown adipose tissue formation 

  340. Sci. Rep. Chen 5 11909 2015 10.1038/srep11909 miR-125a-3p and miR-483-5p promote adipogenesis via suppressing the RhoA/ROCK1/ERK1/2 pathway in multiple symmetric lipomatosis 

  341. Am. J. Physiol. Endocrinol. Metab. Gerin 299 E198 2010 10.1152/ajpendo.00179.2010 Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis 

  342. Front. Genet. Wang 11 2020 miR-424 promotes bovine adipogenesis through an unconventional post-transcriptional regulation of STK11 

  343. Anim. Open Access J. MDPI Yu 10 2020 Isolation and identification of bovine preadipocytes and screening of MicroRNAs associated with adipogenesis 

  344. BMC Genom. Romao 15 137 2014 10.1186/1471-2164-15-137 MicroRNAs in bovine adipogenesis: genomic context, expression and function 

  345. Acta Biochim. Biophys. Sin. Dong 46 565 2014 10.1093/abbs/gmu043 MiR-15a/b promote adipogenesis in porcine pre-adipocyte via repressing FoxO1 

  346. Int. J. Mol. Sci. Shi 15 8526 2014 10.3390/ijms15058526 MicroRNA-199a-5p affects porcine preadipocyte proliferation and differentiation 

  347. Animals Ma 10 468 2020 10.3390/ani10030468 MiRNAs and mRNAs analysis during abdominal preadipocyte differentiation in chickens 

  348. Method Mol. Biol. Clifton NJ Chen 1889 25 2019 10.1007/978-1-4939-8897-6_3 Transdifferentiation of muscle satellite cells to adipose cells using CRISPR/Cas9-Mediated targeting of MyoD 

  349. J. Adv. Manuf. Process Kis 2 2020 10.1002/amp2.10060 Rapid development and deployment of high-volume vaccines for pandemic response 

  350. J. Multidiscip. Eng. Sci. Technol. Pascolo 4 6937 2017 Messenger RNA: the inexpensive biopharmaceutical 

  351. Vaccines Blakney 9 97 2021 10.3390/vaccines9020097 An update on self-amplifying mRNA vaccine development 

  352. Gene Ther. Bloom 1-13 2020 Self-amplifying RNA vaccines for infectious diseases 

  353. J. Contr. Release Blakney 338 201 2021 10.1016/j.jconrel.2021.08.029 Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines 

  354. ELife Squillaro 9 2020 10.7554/eLife.59053 Long non-coding RNAs in regulation of adipogenesis and adipose tissue function 

  355. Stem Cell Rep. Xiao 5 856 2015 10.1016/j.stemcr.2015.09.007 Long noncoding RNA ADINR regulates adipogenesis by transcriptionally activating C/EBPα 

  356. Animal Ma 12 2123 2018 10.1017/S1751731118000150 Three-dimensional spheroid culture of adipose stromal vascular cells for studying adipogenesis in beef cattle 

  357. Tissue Eng Part A Kang 15 2227 2009 10.1089/ten.tea.2008.0469 In vitro 3D model for human vascularized adipose tissue 

  358. Macromol. Biosci. Kang 11 673 2011 10.1002/mabi.201000479 The effect of conjugating RGD into 3D alginate hydrogels on adipogenic differentiation of human adipose-derived stromal cells 

  359. Adv Healthc Mater Abbott 5 1667 2016 10.1002/adhm.201600211 The use of silk as a scaffold for mature, sustainable unilocular adipose 3D tissue engineered systems 

  360. Nutr. Metab. Insights Aulthouse 12 2019 10.1177/1178638819841399 Part 1: a novel model for three-dimensional culture of 3T3-L1 preadipocytes stimulates spontaneous cell differentiation independent of chemical induction typically required in monolayer 

  361. Lab Chip Yang 21 435 2021 10.1039/D0LC00981D A 3D human adipose tissue model within a microfluidic device 

  362. Nat. Med. Helmlinger 3 177 1997 10.1038/nm0297-177 Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation 

  363. Nat. Biotechnol. Jain 23 821 2005 10.1038/nbt0705-821 Engineering vascularized tissue 

  364. Proc. Natl. Acad. Sci. Unit. States Am. Kolesky 113 3179 2016 10.1073/pnas.1521342113 Three-dimensional bioprinting of thick vascularized tissues 

  365. Biophys. J. Sarig-Nadir 96 4743 2009 10.1016/j.bpj.2009.03.019 Laser photoablation of guidance microchannels into hydrogels directs cell growth in three dimensions 

  366. Biomaterials Lovett 28 5271 2007 10.1016/j.biomaterials.2007.08.008 Silk fibroin microtubes for blood vessel engineering 

  367. J. Chem. Eng. Jpn. Yamamoto 45 348 2012 10.1252/jcej.11we237 Hollow fiber bioreactor perfusion culture system for magnetic force-based skeletal muscle tissue engineering 

  368. Adv Healthc Mater Hsiao 5 548 2016 10.1002/adhm.201500673 3D tissue formation of unilocular adipocytes in hydrogel microfibers 

  369. PLoS One Aubin 10 2015 10.1371/journal.pone.0137612 Characterization of in vitro engineered human adipose tissues: relevant adipokine secretion and impact of TNF-α 

  370. Development Han 138 5027 2011 10.1242/dev.067686 The spatiotemporal development of adipose tissue 

  371. Sci. Rep. Andrée 9 1 2019 10.1038/s41598-019-41985-6 Formation of three-dimensional tubular endothelial cell networks under defined serum-free cell culture conditions in human collagen hydrogels 

  372. Tissue Eng Part A Lai 15 1053 2009 10.1089/ten.tea.2008.0101 Enhanced proliferation of human umbilical vein endothelial cells and differentiation of 3T3-L1 adipocytes in coculture 

  373. Cyborg Bionic Syst. Louis 2021 1 2021 10.34133/2021/1412542 Bioprinted vascularized mature adipose tissue with collagen microfibers for soft tissue regeneration 

  374. 10.1002/jbm.b.34235 Volz A-C, Hack L, Kluger PJ. A cellulose-based material for vascularized adipose tissue engineering. J Biomed Mater Res B Appl Biomater n.d.;0. https://doi.org/10.1002/jbm.b.34235. 

  375. Tissue Eng Part A Wittmann 21 1343 2015 10.1089/ten.tea.2014.0299 Engineering vascularized adipose tissue using the stromal-vascular fraction and fibrin hydrogels 

  376. Bioengineering Yang 7 114 2020 10.3390/bioengineering7030114 Optimization of Co-culture conditions for a human vascularized adipose tissue model 

  377. Regen Eng Transl Med Unal 4 21 2018 10.1007/s40883-018-0046-2 3D Co-culture with vascular cells supports long-term hepatocyte phenotype and function in vitro 

  378. BIO-Protoc Tetzlaff 8 2018 10.21769/BioProtoc.2995 Human endothelial cell spheroid-based sprouting angiogenesis assay in collagen 

  379. Tissue Eng. C Methods Moya 19 730 2013 10.1089/ten.tec.2012.0430 In vitro perfused human capillary networks 

  380. Dev Camb Engl Berry 140 3939 2013 The developmental origins of adipose tissue 

  381. Int. J. Obes. Sheng 2014 38 315 2005 Adipocyte differentiation is affected by media height above the cell layer 

  382. Int. J. Mol. Sci. Imashiro 22 2021 10.3390/ijms22010425 Fundamental technologies and recent advances of cell-sheet-based tissue engineering 

  383. ACS Biomater. Sci. Eng. Shahin-Shamsabadi 6 5346 2020 10.1021/acsbiomaterials.0c01073 π-SACS: pH induced self-assembled cell sheets without the need for modified surfaces 

  384. Labbé 429 2011 Adipose-Deriv. Stem Cells Methods Protoc. Cell sheet technology for tissue engineering: the self-assembly approach using adipose-derived stromal cells 

  385. J Vis Exp JoVE Scahill 2018 10.3791/57909-v A microphysiologic platform for human fat: sandwiched white adipose tissue 

  386. Cancer Res. Nederman 44 3090 1984 Demonstration of an extracellular matrix in multicellular tumor spheroids 

  387. Sci. Rep. Bauman 8 230 2018 10.1038/s41598-017-18431-6 Xeno-free pre-vascularized spheroids for therapeutic applications 

  388. Sci. Rep. Kumar 5 8729 2015 10.1038/srep08729 Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies 

  389. Front. Physiol. Thorrez 9 2018 10.3389/fphys.2018.01076 Engineering of human skeletal muscle with an autologous deposited extracellular matrix 

  390. J. Food Sci. Dreher 85 421 2020 10.1111/1750-3841.14993 Formation and characterization of plant-based emulsified and crosslinked fat crystal networks to mimic animal fat tissue 

  391. Int J Livest Res Kumbhar 8 1 2018 10.5455/ijlr.20180421070155 Efficacy of composite fat replacer mixture of sodium alginate and carrageenan for development of low fat pork patties 

  392. J. Food Sci. Lin 63 571 1998 10.1111/j.1365-2621.1998.tb15787.x Textural and physicochemical properties of low-fat, precooked ground beef patties containing carrageenan and sodium alginate 

  393. J. Food Sci. Technol. Pintado 53 4336 2016 10.1007/s13197-016-2432-4 Emulsion gels as potential fat replacers delivering β-glucan and healthy lipid content for food applications 

  394. 10.1111/jfq.12104 Production of low‐fat emulsified cooked sausages using amorphous cellulose gel n.d. https://doi.org/10.1111/jfq.12104. 

  395. Food Rev. Int. Yashini 37 197 2019 Protein-based fat replacers - a review of recent advances 

  396. J. Food Process. Preserv. Rather 41 e13249 2017 10.1111/jfpp.13249 Effects of guar gum as a fat substitute in low fat meat emulsions 

  397. J. Food Sci. Technol. Rather 53 2876 2016 10.1007/s13197-016-2270-4 Application of guar-xanthan gum mixture as a partial fat replacer in meat emulsions 

  398. Int. J. Food Sci. Technol. Glisic 54 787 2019 10.1111/ijfs.13996 Inulin-based emulsion-filled gel as a fat replacer in prebiotic- and PUFA-enriched dry fermented sausages 

  399. CyTA - J. Food Silva-Vazquez 16 306 2018 10.1080/19476337.2017.1403490 Effect of inulin and pectin on physicochemical characteristics and emulsion stability of meat batters 

  400. Asian-Australas. J. Anim. Sci. Kim 32 1195 2019 10.5713/ajas.18.0781 Effects of konjac gel with vegetable powders as fat replacers in frankfurter-type sausage 

  401. Foods Wongkaew 9 450 2020 10.3390/foods9040450 Mango peel pectin by microwave-assisted extraction and its use as fat replacement in dried Chinese sausage 

  402. Asian-Australas. J. Anim. Sci. Verma 28 252 2015 10.5713/ajas.14.0291 Efficacy of sweet potato powder and added water as fat replacer on the quality attributes of low-fat pork patties 

  403. J. Food Sci. Technol. Rather 52 8104 2015 10.1007/s13197-015-1960-7 Xanthan gum as a fat replacer in goshtaba-a traditional meat product of India: effects on quality and oxidative stability 

  404. Food Control Schreuders 127 108103 2021 10.1016/j.foodcont.2021.108103 Texture methods for evaluating meat and meat analogue structures: a review 

  405. Anim. Sci. J. Nishimura 81 21 2010 10.1111/j.1740-0929.2009.00696.x The role of intramuscular connective tissue in meat texture 

  406. Anim. Prod. Sci. Therkildsen 61 432 2020 10.1071/AN20349 Collagen, intramuscular fat and proteolysis affect Warner-Bratzler shear-force of muscles from Bos taurus breed types differently at weaning, after backgrounding on pasture, and after feedlotting 

  407. J. Anim. Sci. Martínez-Álvaroi 94 5137 2016 10.2527/jas.2016-0850 Effect of divergent selection for intramuscular fat on sensory traits and instrumental texture in rabbit meat 

  408. Trends Food Sci. Technol. Andjelković 77 100 2018 10.1016/j.tifs.2018.04.008 Mass spectrometry based proteomics as foodomics tool in research and assurance of food quality and safety 

  409. Metabolomics Off J Metabolomic Soc Breitkopf 13 2017 A relative quantitative positive/negative ion switching method for untargeted lipidomics via high resolution LC-MS/MS from any biological source 

  410. PLoS One Ouellette 14 2019 10.1371/journal.pone.0224228 Linoleic acid supplementation of cell culture media influences the phospholipid and lipid profiles of human reconstructed adipose tissue 

  411. Int. J. Mol. Sci. Urrutia 21 3183 2020 10.3390/ijms21093183 Adipose tissue modification through feeding strategies and their implication on adipogenesis and adipose tissue metabolism in ruminants 

  412. Anim. Prod. Sci. Bermingham 61 179 2020 Assessment of atherogenic index, long-chain omega-3 fatty acid and phospholipid content of prime beef: a survey of commercially sourced New Zealand Wagyu and Angus beef cattle 

  413. Br. J. Nutr. Scollan 85 115 2001 10.1079/BJN2000223 Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle 

  414. Food Sci Biotechnol Huang 19 1267 2010 10.1007/s10068-010-0181-0 Study on the flavor contribution of phospholipids and triglycerides to pork 

  415. J. Sci. Food Agric. Mottram 34 517 1983 10.1002/jsfa.2740340513 The role of triglycerides and phospholipids in the aroma of cooked beef 

  416. J Nutr Metab Patterson 2012 539426 2012 10.1155/2012/539426 Health implications of high dietary omega-6 polyunsaturated Fatty acids 

  417. J. Am. Med. Assoc. Hu 288 2569 2002 10.1001/jama.288.20.2569 Optimal diets for prevention of coronary heart disease 

  418. J. Food Sci. Watanabe 73 C420 2008 10.1111/j.1750-3841.2008.00764.x Analysis of volatile compounds in beef fat by dynamic-headspace solid-phase microextraction combined with gas chromatography-mass spectrometry 

  419. J. Food Process. Preserv. Wang 42 e13503 2018 10.1111/jfpp.13503 Analysis of volatile compounds between raw and cooked beef by HS-SPME-GC-MS 

  420. Meat Sci. O'Sullivan 65 1125 2003 10.1016/S0309-1740(02)00342-X A comparison of warmed-over flavour in pork by sensory analysis, GC/MS and the electronic nose 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로