최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기IEEE transactions on medical imaging, v.40 no.12, 2021년, pp.3932 - 3944
Lee, Junghyun (Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea) , Gu, Jawook (Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea) , Ye, Jong Chul (Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea)
Metal artifact reduction (MAR) is one of the most important research topics in computed tomography (CT). With the advance of deep learning approaches for image reconstruction, various deep learning methods have been suggested for metal artifact reduction, among which supervised learning methods are ...
Koo, Terry K., Li, Mae Y.. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of chiropractic medicine, vol.15, no.2, 155-163.
Yan, Ke, Wang, Xiaosong, Lu, Le, Summers, Ronald M.. DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. Journal of medical imaging, vol.5, no.3, 1-.
Lim, Sungjun, Park, Hyoungjun, Lee, Sang-Eun, Chang, Sunghoe, Sim, Byeongsu, Ye, Jong Chul. CycleGAN With a Blur Kernel for Deconvolution Microscopy: Optimal Transport Geometry. IEEE transactions on computational imaging, vol.6, 1127-1138.
arXiv 1701 07875 Wasserstein GAN arjovsky 2017
arXiv 1312 6114 Auto-encoding variational Bayes kingma 2013
Wang, Zhou, Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.13, no.4, 600-612.
Ye, Jong Chul, Han, Yoseob, Cha, Eunju. Deep Convolutional Framelets: A General Deep Learning Framework for Inverse Problems. SIAM journal on imaging sciences, vol.11, no.2, 991-1048.
Proc Adv Neural Inf Process Syst Improved training of Wasserstein GANs gulrajani 2017 5767
Zhang, Yanbo, Yu, Hengyong. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography. IEEE transactions on medical imaging, vol.37, no.6, 1370-1381.
Proc Adv Neural Inf Process Syst Generative adversarial nets goodfellow 2014 2672
Peyré, Gabriel, Cuturi, Marco. Computational Optimal Transport: With Applications to Data Science. Foundations and trends in machine learning, vol.11, no.5, 355-607.
Sim, Byeongsu, Oh, Gyutaek, Kim, Jeongsol, Jung, Chanyong, Ye, JongChul. Optimal Transport Driven CycleGAN for Unsupervised Learning in Inverse Problems. SIAM journal on imaging sciences, vol.13, no.4, 2281-2306.
Proc ICLR $\beta$ -VAE: Learning basic visual concepts with a constrained variational framework higgins 2017 2 6
Itti, L., Koch, C., Niebur, E.. A model of saliency-based visual attention for rapid scene analysis. IEEE transactions on pattern analysis and machine intelligence, vol.20, no.11, 1254-1259.
arXiv 1805 08318 Self-attention generative adversarial networks zhang 2018
arXiv 1806 07185 Mixed batches and symmetric discriminators for GAN training lucas 2018
Zhao, S., Robeltson, D.D., Wang, G., Whiting, B., Bae, K.T.. X-ray CT metal artifact reduction using wavelets: an application for imaging total hip prostheses. IEEE transactions on medical imaging, vol.19, no.12, 1238-1247.
Meyer, Esther, Raupach, Rainer, Lell, Michael, Schmidt, Bernhard, Kachelrieß, Marc. Normalized metal artifact reduction (NMAR) in computed tomography. Medical physics, vol.37, no.10, 5482-5493.
Mahnken, Andreas H., Raupach, Rainer, Wildberger, Joachim E., Jung, Bettina, Heussen, Nicole, Flohr, Thomas G., Günther, Rolf W., Schaller, Stefan. A New Algorithm for Metal Artifact Reduction in Computed Tomography: In Vitro and In Vivo Evaluation After Total Hip Replacement. Investigative radiology, vol.38, no.12, 769-775.
Proc Eur Conf Comput Vis (ECCV) CBAM: Convolutional block attention module woo 2018 3
Wang, Ge, Snyder, D.L., O'Sullivan, J.A., Vannier, M.W.. Iterative deblurring for CT metal artifact reduction. IEEE transactions on medical imaging, vol.15, no.5, 657-664.
Shepp, L. A., Vardi, Y.. Maximum Likelihood Reconstruction for Emission Tomography. IEEE transactions on medical imaging, vol.1, no.2, 113-122.
Computed Tomography Principles Design Artifacts and Recent Advances hsieh 2003 114
De Man, B., Nuyts, J., Dupont, P., Marchal, G., Suetens, P.. An iterative maximum-likelihood polychromatic algorithm for CT. IEEE transactions on medical imaging, vol.20, no.10, 999-1008.
Feldkamp, L. A., Davis, L. C., Kress, J. W.. Practical cone-beam algorithm. Journal of the Optical Society of America. A, Optics and image science, vol.1, no.6, 612-.
Rensink, Ronald A.. The Dynamic Representation of Scenes. Visual cognition, vol.7, no.1, 17-42.
Proc Adv Neural Inf Process Syst Learning to combine foveal glimpses with a third-order Boltzmann machine larochelle 2010 1243
Corbetta, Maurizio, Shulman, Gordon L.. Control of goal-directed and stimulus-driven attention in the brain. Nature reviews. Neuroscience, vol.3, no.3, 201-215.
Liao, Haofu, Lin, Wei-An, Zhou, S. Kevin, Luo, Jiebo. ADN: Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction. IEEE transactions on medical imaging, vol.39, no.3, 634-643.
De Man, B., Nuyts, J., Dupont, P., Marchal, G., Suetens, P.. Reduction of metal streak artifacts in X-ray computed tomography using a transmission maximum a posteriori algorithm. IEEE transactions on nuclear science, vol.47, no.3, 977-981.
Proc 34th Int Conf Mach Learn Conditional image synthesis with auxiliary classifier GANs odena 2017 2642
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.