$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Unsupervised CT Metal Artifact Learning Using Attention-Guided β-CycleGAN

IEEE transactions on medical imaging, v.40 no.12, 2021년, pp.3932 - 3944  

Lee, Junghyun (Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea) ,  Gu, Jawook (Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea) ,  Ye, Jong Chul (Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Metal artifact reduction (MAR) is one of the most important research topics in computed tomography (CT). With the advance of deep learning approaches for image reconstruction, various deep learning methods have been suggested for metal artifact reduction, among which supervised learning methods are ...

참고문헌 (39)

  1. Koo, Terry K., Li, Mae Y.. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of chiropractic medicine, vol.15, no.2, 155-163.

  2. Yan, Ke, Wang, Xiaosong, Lu, Le, Summers, Ronald M.. DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. Journal of medical imaging, vol.5, no.3, 1-.

  3. 10.1109/ICCV.2017.304 

  4. Lim, Sungjun, Park, Hyoungjun, Lee, Sang-Eun, Chang, Sunghoe, Sim, Byeongsu, Ye, Jong Chul. CycleGAN With a Blur Kernel for Deconvolution Microscopy: Optimal Transport Geometry. IEEE transactions on computational imaging, vol.6, 1127-1138.

  5. arXiv 1701 07875 Wasserstein GAN arjovsky 2017 

  6. arXiv 1312 6114 Auto-encoding variational Bayes kingma 2013 

  7. Wang, Zhou, Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.13, no.4, 600-612.

  8. 10.1109/CVPR.2017.632 

  9. Ye, Jong Chul, Han, Yoseob, Cha, Eunju. Deep Convolutional Framelets: A General Deep Learning Framework for Inverse Problems. SIAM journal on imaging sciences, vol.11, no.2, 991-1048.

  10. Proc Adv Neural Inf Process Syst Improved training of Wasserstein GANs gulrajani 2017 5767 

  11. 10.1007/978-3-030-00928-1_1 

  12. Zhang, Yanbo, Yu, Hengyong. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography. IEEE transactions on medical imaging, vol.37, no.6, 1370-1381.

  13. 10.1109/CVPR.2019.01076 

  14. Proc Adv Neural Inf Process Syst Generative adversarial nets goodfellow 2014 2672 

  15. 10.1109/ICCV.2017.244 

  16. 10.1007/978-3-540-71050-9 

  17. Peyré, Gabriel, Cuturi, Marco. Computational Optimal Transport: With Applications to Data Science. Foundations and trends in machine learning, vol.11, no.5, 355-607.

  18. Sim, Byeongsu, Oh, Gyutaek, Kim, Jeongsol, Jung, Chanyong, Ye, JongChul. Optimal Transport Driven CycleGAN for Unsupervised Learning in Inverse Problems. SIAM journal on imaging sciences, vol.13, no.4, 2281-2306.

  19. Proc ICLR $\beta$ -VAE: Learning basic visual concepts with a constrained variational framework higgins 2017 2 6 

  20. Itti, L., Koch, C., Niebur, E.. A model of saliency-based visual attention for rapid scene analysis. IEEE transactions on pattern analysis and machine intelligence, vol.20, no.11, 1254-1259.

  21. arXiv 1805 08318 Self-attention generative adversarial networks zhang 2018 

  22. 10.1148/radiology.164.2.3602406 

  23. arXiv 1806 07185 Mixed batches and symmetric discriminators for GAN training lucas 2018 

  24. Zhao, S., Robeltson, D.D., Wang, G., Whiting, B., Bae, K.T.. X-ray CT metal artifact reduction using wavelets: an application for imaging total hip prostheses. IEEE transactions on medical imaging, vol.19, no.12, 1238-1247.

  25. Meyer, Esther, Raupach, Rainer, Lell, Michael, Schmidt, Bernhard, Kachelrieß, Marc. Normalized metal artifact reduction (NMAR) in computed tomography. Medical physics, vol.37, no.10, 5482-5493.

  26. Mahnken, Andreas H., Raupach, Rainer, Wildberger, Joachim E., Jung, Bettina, Heussen, Nicole, Flohr, Thomas G., Günther, Rolf W., Schaller, Stefan. A New Algorithm for Metal Artifact Reduction in Computed Tomography: In Vitro and In Vivo Evaluation After Total Hip Replacement. Investigative radiology, vol.38, no.12, 769-775.

  27. Proc Eur Conf Comput Vis (ECCV) CBAM: Convolutional block attention module woo 2018 3 

  28. Wang, Ge, Snyder, D.L., O'Sullivan, J.A., Vannier, M.W.. Iterative deblurring for CT metal artifact reduction. IEEE transactions on medical imaging, vol.15, no.5, 657-664.

  29. Shepp, L. A., Vardi, Y.. Maximum Likelihood Reconstruction for Emission Tomography. IEEE transactions on medical imaging, vol.1, no.2, 113-122.

  30. Computed Tomography Principles Design Artifacts and Recent Advances hsieh 2003 114 

  31. De Man, B., Nuyts, J., Dupont, P., Marchal, G., Suetens, P.. An iterative maximum-likelihood polychromatic algorithm for CT. IEEE transactions on medical imaging, vol.20, no.10, 999-1008.

  32. Feldkamp, L. A., Davis, L. C., Kress, J. W.. Practical cone-beam algorithm. Journal of the Optical Society of America. A, Optics and image science, vol.1, no.6, 612-.

  33. Rensink, Ronald A.. The Dynamic Representation of Scenes. Visual cognition, vol.7, no.1, 17-42.

  34. Proc Adv Neural Inf Process Syst Learning to combine foveal glimpses with a third-order Boltzmann machine larochelle 2010 1243 

  35. Corbetta, Maurizio, Shulman, Gordon L.. Control of goal-directed and stimulus-driven attention in the brain. Nature reviews. Neuroscience, vol.3, no.3, 201-215.

  36. Liao, Haofu, Lin, Wei-An, Zhou, S. Kevin, Luo, Jiebo. ADN: Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction. IEEE transactions on medical imaging, vol.39, no.3, 634-643.

  37. De Man, B., Nuyts, J., Dupont, P., Marchal, G., Suetens, P.. Reduction of metal streak artifacts in X-ray computed tomography using a transmission maximum a posteriori algorithm. IEEE transactions on nuclear science, vol.47, no.3, 977-981.

  38. Proc 34th Int Conf Mach Learn Conditional image synthesis with auxiliary classifier GANs odena 2017 2642 

  39. 10.1109/ISBI45749.2020.9098633 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로