$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Design of High-Gain Sub-THz Regenerative Amplifiers Based on Double-Gmax Gain Boosting Technique

IEEE journal of solid-state circuits, v.56 no.11, 2021년, pp.3388 - 3398  

Park, Dae-Woong (Korea Advanced Institute of Science and Technology (KAIST), School of Electrical Engineering, Daejeon, South Korea) ,  Utomo, Dzuhri Radityo (Korea Advanced Institute of Science and Technology (KAIST), School of Electrical Engineering, Daejeon, South Korea) ,  Yun, Byeonghun (Korea Advanced Institute of Science and Technology (KAIST), School of Electrical Engineering, Daejeon, South Korea) ,  Mahmood, Hafiz Usman (Korea Advanced Institute of Science and Technology (KAIST), School of Electrical Engineering, Daejeon, South Korea) ,  Hong, Jong-Phil (Chungbuk National University, School of Electrical Engineering, Cheongju, South Korea) ,  Lee, Sang-Gug (Korea Advanced Institute of Science and Technology (KAIST), School of Electrical Engineering, Daejeon, South Korea)

Abstract AI-Helper 아이콘AI-Helper

This article reports the concept of a double maximum achievable gain (double- $G_{\mathrm{ max}}$) core for the implementation of sub-terahertz high-gain amplifier design. The double- $G_{\mathrm{ max}}$ core is a $G_{\mathrm{ max}}$ core that adopts another linear, ...

참고문헌 (34)

  1. Yun, Byeonghun, Park, Dae-Woong, Mahmood, Hafiz Usman, Kim, Doyoon, Lee, Sang-Gug. A D-Band High-Gain and Low-Power LNA in 65-nm CMOS by Adopting Simultaneous Noise- and Input-Matched Gmax-Core. IEEE transactions on microwave theory and techniques, vol.69, no.5, 2519-2530.

  2. Munkyo Seo, Jagannathan, B., Pekarik, J., Rodwell, M.J.W.. A 150 GHz Amplifier With 8 dB Gain and $+$6 dBm $P_{\rm sat}$ in Digital 65 nm CMOS Using Dummy-Prefilled Microstrip Lines. IEEE journal of solid-state circuits, vol.44, no.12, 3410-3421.

  3. Proc Asia–Pacific Microw Conf (APMC) Theory of gain and stability of small-signal amplifiers with lossless reciprocal feedback amakawa 2014 1184 

  4. Wang, Zheng, Heydari, Payam. A Study of Operating Condition and Design Methods to Achieve the Upper Limit of Power Gain in Amplifiers at Near- $f_{max}$ Frequencies. IEEE transactions on circuits and systems. a publication of the IEEE Circuits and Systems Society. I, Regular papers, vol.64, no.2, 261-271.

  5. Khatibi, Hamid, Khiyabani, Somayeh, Afshari, Ehsan. A 173 GHz Amplifier With a 18.5 dB Power Gain in a 130 nm SiGe Process: A Systematic Design of High-Gain Amplifiers Above $f_{\max }/2$. IEEE transactions on microwave theory and techniques, vol.66, no.1, 201-214.

  6. Kulesa, C.. Terahertz Spectroscopy for Astronomy: From Comets to Cosmology. IEEE transactions on terahertz science and technology, vol.1, no.1, 232-240.

  7. Taylor, Z. D., Singh, R. S., Bennett, D. B., Tewari, P., Kealey, C. P., Bajwa, N., Culjat, M. O., Stojadinovic, A., Hua Lee, Hubschman, Jean-Pierre, Brown, E. R., Grundfest, W. S.. THz Medical Imaging: in vivo Hydration Sensing. IEEE transactions on terahertz science and technology, vol.1, no.1, 201-219.

  8. IEEE MTT-S Int Microw Symp Dig Remote gas sensing in full-scale fire with sub-terahertz waves shimizu 2011 1 

  9. Nazari, Peyman, Jafarlou, Saman, Heydari, Payam. A CMOS Two-Element 170-GHz Fundamental-Frequency Transmitter With Direct RF-8PSK Modulation. IEEE journal of solid-state circuits, vol.55, no.2, 282-297.

  10. IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers 9.4 A 145 GHz FMCW-radar transceiver in 28 nm CMOS visweswaran 2019 168 

  11. Ko, Chun-Lin, Li, Chun-Hsing, Kuo, Chien-Nan, Kuo, Ming-Ching, Chang, Da-Chiang. A 210-GHz Amplifier in 40-nm Digital CMOS Technology. IEEE transactions on microwave theory and techniques, vol.61, no.6, 2438-2446.

  12. 10.1109/MWSYM.2008.4633188 

  13. Ojefors, E., Heinemann, B., Pfeiffer, U. R.. Subharmonic 220- and 320-GHz SiGe HBT Receiver Front-Ends. IEEE transactions on microwave theory and techniques, vol.60, no.5, 1397-1404.

  14. Park, Dae-Woong, Utomo, Dzuhri Radityo, Lam, Bao Huu, Hong, Jong-Phil, Lee, Sang-Gug. A 280-/300-GHz Three-Stage Amplifiers in 65-nm CMOS With 12-/9-dB Gain and 1.6/1.4% PAE While Dissipating 17.9 mW. IEEE microwave and wireless components letters : a publication of the IEEE Microwave Theory and Techniques Society, vol.28, no.1, 79-81.

  15. Tokgoz, Korkut Kaan, Abdo, Ibrahim, Fujimura, Takuya, Pang, Jian, Kawano, Yoichi, Iwai, Taisuke, Kasamatsu, Akifumi, Watanabe, Issei, Okada, Kenichi. A 273–301-GHz Amplifier With 21-dB Peak Gain in 65-nm Standard Bulk CMOS. IEEE microwave and wireless components letters : a publication of the IEEE Microwave Theory and Techniques Society, vol.29, no.5, 342-344.

  16. 10.1109/RFIC49505.2020.9218441 

  17. Choi, Kyung‐Sik, Park, Dae‐Woong, Utomo, Dzuhri Radityo, Lee, Sang‐Gug. 500 GHz CMOS heterodyne imager adopting fourth subharmonic passive mixer. Microwave and optical technology letters, vol.62, no.2, 683-687.

  18. Zheng Wang, Pei-Yuan Chiang, Nazari, Peyman, Chun-Cheng Wang, Zhiming Chen, Heydari, Payam. A CMOS 210-GHz Fundamental Transceiver With OOK Modulation. IEEE journal of solid-state circuits, vol.49, no.3, 564-580.

  19. 10.1109/ASSCC.2017.8240238 

  20. Cooper, K. B., Dengler, R. J., Llombart, Nuria, Thomas, B., Chattopadhyay, G., Siegel, P. H.. THz Imaging Radar for Standoff Personnel Screening. IEEE transactions on terahertz science and technology, vol.1, no.1, 169-182.

  21. Gupta, M.S.. Power gain in feedback amplifiers, a classic revisited. IEEE transactions on microwave theory and techniques, vol.40, no.5, 864-879.

  22. Kemp, M. C.. Explosives Detection by Terahertz Spectroscopy—A Bridge Too Far?. IEEE transactions on terahertz science and technology, vol.1, no.1, 282-292.

  23. Ajito, K., Ueno, Y.. THz Chemical Imaging for Biological Applications. IEEE transactions on terahertz science and technology, vol.1, no.1, 293-300.

  24. Friederich, F., von Spiegel, W., Bauer, M., Fanzhen Meng, Thomson, M. D., Boppel, S., Lisauskas, A., Hils, B., Krozer, V., Keil, A., Loffler, T., Henneberger, R., Huhn, A. K., Spickermann, G., Bolivar, P. H., Roskos, H. G.. THz Active Imaging Systems With Real-Time Capabilities. IEEE transactions on terahertz science and technology, vol.1, no.1, 183-200.

  25. Al Hadi, R., Sherry, H., Grzyb, J., Yan Zhao, Forster, W., Keller, H. M., Cathelin, A., Kaiser, A., Pfeiffer, U. R.. A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS. IEEE journal of solid-state circuits, vol.47, no.12, 2999-3012.

  26. Tanaka, M., Hirori, H., Nagai, M.. THz Nonlinear Spectroscopy of Solids. IEEE transactions on terahertz science and technology, vol.1, no.1, 301-312.

  27. Siegel, P.H.. Terahertz technology. IEEE transactions on microwave theory and techniques, vol.50, no.3, 910-928.

  28. Proc Asia–Pacific Microw Conf (APMC) 265-GHz, 10-dB gain amplifier in 65-nm CMOS using on-wafer TRL calibration yagishita 2015 2 1 

  29. Bameri, Hadi, Momeni, Omeed. A High-Gain mm-Wave Amplifier Design: An Analytical Approach to Power Gain Boosting. IEEE journal of solid-state circuits, vol.52, no.2, 357-370.

  30. Park, Dae-Woong, Utomo, Dzuhri Radityo, Lam, Bao Huu, Lee, Sang-Gug, Hong, Jong-Phil. A 230–260-GHz Wideband and High-Gain Amplifier in 65-nm CMOS Based on Dual-Peak $G_{{\mathrm{max}}}$-Core. IEEE journal of solid-state circuits, vol.54, no.6, 1613-1623.

  31. Moghadami, Siavash, Ardalan, Shahab. A 205 GHz Amplifier With 10.5 dB Gain and $-$1.6 dBm Saturated Power Using 90 nm CMOS. IEEE microwave and wireless components letters : a publication of the IEEE Microwave Theory and Techniques Society, vol.26, no.3, 207-209.

  32. Moghadami, Siavash, Isaac, Jacob, Ardalan, Shahab. A 0.2–0.3 THz CMOS Amplifier With Tunable Neutralization Technique. IEEE transactions on terahertz science and technology, vol.5, no.6, 1088-1093.

  33. Proc IEEE Compound Semiconductor Integr Circuit Symp (CSICS) 190-260 GHz high-power, broadband PA’s in 250 nm InP HBT griffith 2015 1 

  34. Radisic, V, Deal, W R, Leong, K M K H, Mei, X B, Yoshida, W, Po-Hsin Liu, Uyeda, J, Fung, A, Samoska, L, Gaier, T, Lai, R. A 10-mW Submillimeter-Wave Solid-State Power-Amplifier Module. IEEE transactions on microwave theory and techniques, vol.58, no.7, 1903-1909.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로