$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Motion recommendation for online character control

ACM transactions on graphics, v.40 no.6, 2021년, pp.1 - 16  

Cho, Kyungmin (KAIST, South Korea) ,  Kim, Chaelin (KAIST, South Korea) ,  Park, Jungjin (KAIST, South Korea) ,  Park, Joonkyu (KAIST, South Korea) ,  Noh, Junyong (KAIST, South Korea)

Abstract AI-Helper 아이콘AI-Helper

Reinforcement learning (RL) has been proven effective in many scenarios, including environment exploration and motion planning. However, its application in data-driven character control has produced relatively simple motion results compared to recent approaches that have used large complex motion da...

참고문헌 (56)

  1. Deep Reinforcement Learning for Navigation in AAA Video Games. arXiv preprint arXiv:2011.04764 Alonso Eloi 2020 Eloi Alonso , Maxim Peter , David Goumard , and Joshua Romoff . 2020. Deep Reinforcement Learning for Navigation in AAA Video Games. arXiv preprint arXiv:2011.04764 ( 2020 ). Eloi Alonso, Maxim Peter, David Goumard, and Joshua Romoff. 2020. Deep Reinforcement Learning for Navigation in AAA Video Games. arXiv preprint arXiv:2011.04764 (2020). 

  2. Arikan, Okan, Forsyth, D. A.. Interactive motion generation from examples. ACM transactions on graphics, vol.21, no.3, 483-490.

  3. Miles Brundage, and Anil Anthony Bharath. Arulkumaran Kai 2017 Kai Arulkumaran , Marc Peter Deisenroth , Miles Brundage, and Anil Anthony Bharath. 2017 . A brief survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866 (2017). Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. 2017. A brief survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866 (2017). 

  4. Bergamin, Kevin, Clavet, Simon, Holden, Daniel, Forbes, James Richard. DReCon : data-driven responsive control of physics-based characters. ACM transactions on graphics, vol.38, no.6, 1-11.

  5. Proc. of GDC 2018 Bollo David 2016 David Bollo . 2016 . Inertialization: High-Performance Animation Transitions in'Gears of War '. Proc. of GDC 2018 (2016). David Bollo. 2016. Inertialization: High-Performance Animation Transitions in'Gears of War'. Proc. of GDC 2018 (2016). 

  6. 10.1145/3084363.3085069 

  7. Openai gym. arXiv preprint arXiv:1606.01540 Brockman Greg 2016 Greg Brockman , Vicki Cheung , Ludwig Pettersson , Jonas Schneider , John Schulman , Jie Tang , and Wojciech Zaremba . 2016. Openai gym. arXiv preprint arXiv:1606.01540 ( 2016 ). Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint arXiv:1606.01540 (2016). 

  8. Proc. of Nucl. ai Büttner Michael 2015 Michael Büttner and Simon Clavet . 2015 . Motion Matching-The Road to Next Gen Animation . Proc. of Nucl. ai (2015). Michael Büttner and Simon Clavet. 2015. Motion Matching-The Road to Next Gen Animation. Proc. of Nucl. ai (2015). 

  9. 10.1145/3274247.3274506 

  10. Deep reinforcement learning in large discrete action spaces. arXiv preprint arXiv:1512.07679 Dulac-Arnold Gabriel 2015 Gabriel Dulac-Arnold , Richard Evans , Hado van Hasselt , Peter Sunehag , Timothy Lillicrap , Jonathan Hunt , Timothy Mann , Theophane Weber , Thomas Degris , and Ben Coppin . 2015. Deep reinforcement learning in large discrete action spaces. arXiv preprint arXiv:1512.07679 ( 2015 ). Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. 2015. Deep reinforcement learning in large discrete action spaces. arXiv preprint arXiv:1512.07679 (2015). 

  11. Robust Motion In-Betweening. 39, 4 Harvey Félix G. 2020 Félix G. Harvey , Mike Yurick , Derek Nowrouzezahrai , and Christopher Pal . 2020. Robust Motion In-Betweening. 39, 4 ( 2020 ). Félix G. Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal. 2020. Robust Motion In-Betweening. 39, 4 (2020). 

  12. 10.1145/1230100.1230123 

  13. Nicolas Heess Dhruva TB Srinivasan Sriram Jay Lemmon Josh Merel Greg Wayne Yuval Tassa Tom Erez Ziyu Wang SM Eslami etal 2017. Emergence of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286 (2017). Nicolas Heess Dhruva TB Srinivasan Sriram Jay Lemmon Josh Merel Greg Wayne Yuval Tassa Tom Erez Ziyu Wang SM Eslami et al. 2017. Emergence of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286 (2017). 

  14. Holden, Daniel, Kanoun, Oussama, Perepichka, Maksym, Popa, Tiberiu. Learned motion matching. ACM transactions on graphics, vol.39, no.4,

  15. Holden, Daniel, Komura, Taku, Saito, Jun. Phase-functioned neural networks for character control. ACM transactions on graphics, vol.36, no.4, 1-13.

  16. Holden, Daniel, Saito, Jun, Komura, Taku. A deep learning framework for character motion synthesis and editing. ACM transactions on graphics, vol.35, no.4, 1-11.

  17. 10.1145/2820903.2820918 

  18. Jiang, Yifeng, Van Wouwe, Tom, De Groote, Friedl, Liu, C. Karen. Synthesis of biologically realistic human motion using joint torque actuation. ACM transactions on graphics, vol.38, no.4, 1-12.

  19. 10.1145/1186562.1015760 

  20. Kovar, Lucas, Gleicher, Michael, Pighin, Frédéric. Motion graphs. ACM transactions on graphics, vol.21, no.3, 473-482.

  21. Lee, Jehee, Chai, Jinxiang, Reitsma, Paul S. A., Hodgins, Jessica K., Pollard, Nancy S.. Interactive control of avatars animated with human motion data. ACM transactions on graphics, vol.21, no.3, 491-500.

  22. Lee, Jehee, Lee, Kang Hoon. Precomputing avatar behavior from human motion data. Graphical models, vol.68, no.2, 158-174.

  23. Lee, Seunghwan, Park, Moonseok, Lee, Kyoungmin, Lee, Jehee. Scalable muscle-actuated human simulation and control. ACM transactions on graphics, vol.38, no.4, 1-13.

  24. 10.1145/1661412.1618515 

  25. 10.1145/1866158.1866160 

  26. Levine, Sergey, Lee, Yongjoon, Koltun, Vladlen, Popović, Zoran. Space-time planning with parameterized locomotion controllers. ACM transactions on graphics, vol.30, no.3, 1-11.

  27. Levine, Sergey, Wang, Jack M., Haraux, Alexis, Popović, Zoran, Koltun, Vladlen. Continuous character control with low-dimensional embeddings. ACM transactions on graphics, vol.31, no.4, 1-10.

  28. Ling, Hung Yu, Zinno, Fabio, Cheng, George, Van De Panne, Michiel. Character controllers using motion VAEs. ACM transactions on graphics, vol.39, no.4,

  29. Liu, Libin, Panne, Michiel Van De, Yin, Kangkang. Guided Learning of Control Graphs for Physics-Based Characters. ACM transactions on graphics, vol.35, no.3, 1-14.

  30. 10.1145/1833349.1778865 

  31. Luo, Ying-Sheng, Soeseno, Jonathan Hans, Chen, Trista Pei-Chun, Chen, Wei-Chao. CARL : controllable agent with reinforcement learning for quadruped locomotion. ACM transactions on graphics, vol.39, no.4,

  32. McCann, James, Pollard, Nancy. Responsive characters from motion fragments. ACM transactions on graphics, vol.26, no.3, 6-.

  33. Hierarchical Visuomotor Control of Humanoids. In International Conference on Learning Representations. https://openreview.net/forum?id=BJfYvo09Y7 Merel Josh 2019 Josh Merel , Arun Ahuja , Vu Pham , Saran Tunyasuvunakool , Siqi Liu , Dhruva Tirumala , Nicolas Heess , and Greg Wayne . 2019 a. Hierarchical Visuomotor Control of Humanoids. In International Conference on Learning Representations. https://openreview.net/forum?id=BJfYvo09Y7 Josh Merel, Arun Ahuja, Vu Pham, Saran Tunyasuvunakool, Siqi Liu, Dhruva Tirumala, Nicolas Heess, and Greg Wayne. 2019a. Hierarchical Visuomotor Control of Humanoids. In International Conference on Learning Representations. https://openreview.net/forum?id=BJfYvo09Y7 

  34. Neural Probabilistic Motor Primitives for Humanoid Control. In International Conference on Learning Representations. https://openreview.net/forum?id=BJl6TjRcY7 Merel Josh 2019 Josh Merel , Leonard Hasenclever , Alexandre Galashov , Arun Ahuja , Vu Pham , Greg Wayne , Yee Whye Teh , and Nicolas Heess . 2019 b. Neural Probabilistic Motor Primitives for Humanoid Control. In International Conference on Learning Representations. https://openreview.net/forum?id=BJl6TjRcY7 Josh Merel, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja, Vu Pham, Greg Wayne, Yee Whye Teh, and Nicolas Heess. 2019b. Neural Probabilistic Motor Primitives for Humanoid Control. In International Conference on Learning Representations. https://openreview.net/forum?id=BJl6TjRcY7 

  35. Min, Jianyuan, Chai, Jinxiang. Motion graphs++ : a compact generative model for semantic motion analysis and synthesis. ACM transactions on graphics, vol.31, no.6, 1-12.

  36. Min, Jianyuan, Chen, Yen-Lin, Chai, Jinxiang. Interactive generation of human animation with deformable motion models. ACM transactions on graphics, vol.29, no.1, 1-12.

  37. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 Mnih Volodymyr 2013 Volodymyr Mnih , Koray Kavukcuoglu , David Silver , Alex Graves , Ioannis Antonoglou , Daan Wierstra , and Martin Riedmiller . 2013. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 ( 2013 ). Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013). 

  38. Neural discrete representation learning. arXiv preprint arXiv:1711.00937 van den Oord Aaron 2017 Aaron van den Oord , Oriol Vinyals , and Koray Kavukcuoglu . 2017. Neural discrete representation learning. arXiv preprint arXiv:1711.00937 ( 2017 ). Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. 2017. Neural discrete representation learning. arXiv preprint arXiv:1711.00937 (2017). 

  39. Park, Soohwan, Ryu, Hoseok, Lee, Seyoung, Lee, Sunmin, Lee, Jehee. Learning predict-and-simulate policies from unorganized human motion data. ACM transactions on graphics, vol.38, no.6, 1-11.

  40. Peng, Xue Bin, Abbeel, Pieter, Levine, Sergey, van de Panne, Michiel. DeepMimic : example-guided deep reinforcement learning of physics-based character skills. ACM transactions on graphics, vol.37, no.4, 1-14.

  41. Peng, Xue Bin, Berseth, Glen, van de Panne, Michiel. Terrain-adaptive locomotion skills using deep reinforcement learning. ACM transactions on graphics, vol.35, no.4, 1-12.

  42. Peng, Xue Bin, Berseth, Glen, Yin, Kangkang, Van De Panne, Michiel. DeepLoco : dynamic locomotion skills using hierarchical deep reinforcement learning. ACM transactions on graphics, vol.36, no.4, 1-13.

  43. Safonova, Alla, Hodgins, Jessica K.. Construction and optimal search of interpolated motion graphs. ACM transactions on graphics, vol.26, no.3, 106-.

  44. Starke, Sebastian, Zhang, He, Komura, Taku, Saito, Jun. Neural state machine for character-scene interactions. ACM transactions on graphics, vol.38, no.6, 1-14.

  45. Starke, Sebastian, Zhao, Yiwei, Komura, Taku, Zaman, Kazi. Local motion phases for learning multi-contact character movements. ACM transactions on graphics, vol.39, no.4,

  46. Treuille, Adrien, Lee, Yongjoon, Popović, Zoran. Near-optimal character animation with continuous control. ACM transactions on graphics, vol.26, no.3, 7-.

  47. Q-Learning in enormous action spaces via amortized approximate maximization. arXiv preprint arXiv:2001.08116 de Wiele Tom Van 2020 Tom Van de Wiele , David Warde-Farley , Andriy Mnih , and Volodymyr Mnih . 2020. Q-Learning in enormous action spaces via amortized approximate maximization. arXiv preprint arXiv:2001.08116 ( 2020 ). Tom Van de Wiele, David Warde-Farley, Andriy Mnih, and Volodymyr Mnih. 2020. Q-Learning in enormous action spaces via amortized approximate maximization. arXiv preprint arXiv:2001.08116 (2020). 

  48. 10.5555/3016100.3016191 

  49. UniCon: Universal Neural Controller For Physics-based Character Motion. arXiv preprint arXiv:2011.15119 Wang Tingwu 2020 Tingwu Wang , Yunrong Guo , Maria Shugrina , and Sanja Fidler . 2020. UniCon: Universal Neural Controller For Physics-based Character Motion. arXiv preprint arXiv:2011.15119 ( 2020 ). Tingwu Wang, Yunrong Guo, Maria Shugrina, and Sanja Fidler. 2020. UniCon: Universal Neural Controller For Physics-based Character Motion. arXiv preprint arXiv:2011.15119 (2020). 

  50. Won, Jungdam, Lee, Jehee. Learning body shape variation in physics-based characters. ACM transactions on graphics, vol.38, no.6, 1-12.

  51. Won, Jungdam, Park, Jongho, Kim, Kwanyu, Lee, Jehee. How to train your dragon : example-guided control of flapping flight. ACM transactions on graphics, vol.36, no.6, 1-13.

  52. Won, Jungdam, Park, Jungnam, Lee, Jehee. Aerobatics control of flying creatures via self-regulated learning. ACM transactions on graphics, vol.37, no.6, 1-10.

  53. Xie, Zhaoming, Ling, Hung Yu, Kim, Nam Hee, van de Panne, Michiel. ALLSTEPS: Curriculum‐driven Learning of Stepping Stone Skills. Computer graphics forum : journal of the European Association for Computer Graphics, vol.39, no.8, 213-224.

  54. Yu, Wenhao, Turk, Greg, Liu, C. Karen. Learning symmetric and low-energy locomotion. ACM transactions on graphics, vol.37, no.4, 1-12.

  55. Zhang, He, Starke, Sebastian, Komura, Taku, Saito, Jun. Mode-adaptive neural networks for quadruped motion control. ACM transactions on graphics, vol.37, no.4, 1-11.

  56. Zhao, L., Safonova, A.. Achieving good connectivity in motion graphs. Graphical models, vol.71, no.4, 139-152.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로