$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Stretchable and Self-Healable Poly(styrene-co-acrylonitrile) Elastomer with Metal-Ligand Coordination Complexes

Langmuir : the ACS journal of surfaces and colloids, v.37 no.48, 2021년, pp.13998 - 14005  

Kee, Jinho (Department of Organic Materials Engineering , Chungnam National University , Daejeon 34134 , Korea) ,  Ahn, Hyungju (Pohang Accelerator Laboratory (PAL) , Pohang University of Science and Technology , Pohang 37673 , Korea) ,  Park, Hyeok (Department of Nano and Advanced Materials Engineering , Sejong University , 209, Neungdong-ro, Gwangjin-gu , Seoul 05006 , Korea) ,  Seo, Young-Soo (Department of Nano and Advanced Materials Engineering , Sejong University , 209, Neungdong-ro, Gwangjin-gu , Seoul 05006 , Korea) ,  Yeo, Yong Ho (Department of Organic Materials Engineering , Chungnam National University , Daejeon 34134 , Korea) ,  Park, Won Ho (Department of Organic Materials Engineering , Chungnam National University , Daejeon 34134 , Korea) ,  Koo, Jaseung

Abstract AI-Helper 아이콘AI-Helper

Recently, soft electronics have attracted significant attention for various applications such as flexible devices, artificial electronic skins, and wearable devices. For practical applications, the key requirements are an appropriate electrical conductivity and excellent elastic properties. Herein, ...

참고문헌 (39)

  1. Takeoka, Yukikazu, Liu, Sizhe, Asai, Fumio. Improvement of mechanical properties of elastic materials by chemical methods. Science and technology of advanced materials, vol.21, no.1, 817-832.

  2. Yuk, Hyunwoo, Zhang, Teng, Parada, German Alberto, Liu, Xinyue, Zhao, Xuanhe. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nature communications, vol.7, 12028-.

  3. Kim, Dae-Hyeong, Lu, Nanshu, Ghaffari, Roozbeh, Rogers, John A. Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics. NPG Asia Materials, vol.4, e15-e15.

  4. Li, Q., Wang, K., Gao, Y., Tan, J. P., Wu, R. Y., Xuan, F. Z.. Highly sensitive wearable strain sensor based on ultra-violet/ozone cracked carbon nanotube/elastomer. Applied physics letters, vol.112, no.26, 263501-.

  5. Mannsfeld, Stefan C. B., Tee, Benjamin C-K., Stoltenberg, Randall M., Chen, Christopher V. H-H., Barman, Soumendra, Muir, Beinn V. O., Sokolov, Anatoliy N., Reese, Colin, Bao, Zhenan. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature materials, vol.9, no.10, 859-864.

  6. Wang, Sihong, Xu, Jie, Wang, Weichen, Wang, Ging-Ji Nathan, Rastak, Reza, Molina-Lopez, Francisco, Chung, Jong Won, Niu, Simiao, Feig, Vivian R., Lopez, Jeffery, Lei, Ting, Kwon, Soon-Ki, Kim, Yeongin, Foudeh, Amir M., Ehrlich, Anatol, Gasperini, Andrea, Yun, Youngjun, Murmann, Boris, Tok, Jeffery B.-H., Bao, Zhenan. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, vol.555, no.7694, 83-88.

  7. Amjadi, Morteza, Pichitpajongkit, Aekachan, Lee, Sangjun, Ryu, Seunghwa, Park, Inkyu. Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire–Elastomer Nanocomposite. ACS nano, vol.8, no.5, 5154-5163.

  8. Muth, Joseph T., Vogt, Daniel M., Truby, Ryan L., Mengüç, Yiğit, Kolesky, David B., Wood, Robert J., Lewis, Jennifer A.. Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers. Advanced materials, vol.26, no.36, 6307-6312.

  9. Yang, Ruiyu, Yao, Yujin, Duan, Zaihua, Yuan, Zhen, Tai, Huiling, Jiang, Yadong, Zheng, Yonghao, Wang, Dongsheng. Constructing Electrically and Mechanically Self-Healing Elastomers by Hydrogen Bonded Intermolecular Network. Langmuir : the ACS journal of surfaces and colloids, vol.36, no.12, 3029-3037.

  10. Kim, Min Seong, Kim, Kyuyoung, Kwon, Donguk, Kim, Seunghwan, Gu, Jimin, Oh, Yong Suk, Park, Inkyu. Microdome-Induced Strain Localization for Biaxial Strain Decoupling toward Stretchable and Wearable Human Motion Detection. Langmuir : the ACS journal of surfaces and colloids, vol.36, no.30, 8939-8946.

  11. Li, Cheng-Hui, Wang, Chao, Keplinger, Christoph, Zuo, Jing-Lin, Jin, Lihua, Sun, Yang, Zheng, Peng, Cao, Yi, Lissel, Franziska, Linder, Christian, You, Xiao-Zeng, Bao, Zhenan. A highly stretchable autonomous self-healing elastomer. Nature chemistry, vol.8, no.6, 618-624.

  12. Pu, Xiong, Liu, Mengmeng, Chen, Xiangyu, Sun, Jiangman, Du, Chunhua, Zhang, Yang, Zhai, Junyi, Hu, Weiguo, Wang, Zhong Lin. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Science advances, vol.3, no.5, e1700015-.

  13. Li, Shuo, Zhao, Huichan, Shepherd, Robert F.. Flexible and stretchable sensors for fluidic elastomer actuated soft robots. MRS bulletin, vol.42, no.2, 138-142.

  14. Rus, Daniela, Tolley, Michael T.. Design, fabrication and control of soft robots. Nature, vol.521, no.7553, 467-475.

  15. Guo, Yifan, Chen, Shuo, Sun, Lijie, Yang, Lei, Zhang, Luzhi, Lou, Jiaming, You, Zhengwei. Degradable and Fully Recyclable Dynamic Thermoset Elastomer for 3D‐Printed Wearable Electronics. Advanced functional materials, vol.31, no.9, 2009799-.

  16. Wang, Chunfeng, Wang, Chonghe, Huang, Zhenlong, Xu, Sheng. Materials and Structures toward Soft Electronics. Advanced materials, vol.30, no.50, 1801368-.

  17. Rosset, Samuel, Niklaus, Muhamed, Dubois, Philippe, Shea, Herbert R.. Metal Ion Implantation for the Fabrication of Stretchable Electrodes on Elastomers. Advanced functional materials, vol.19, no.3, 470-478.

  18. Keplinger, Christoph, Sun, Jeong-Yun, Foo, Choon Chiang, Rothemund, Philipp, Whitesides, George M., Suo, Zhigang. Stretchable, Transparent, Ionic Conductors. Science, vol.341, no.6149, 984-987.

  19. Xu, Jie, Wang, Sihong, Wang, Ging-Ji Nathan, Zhu, Chenxin, Luo, Shaochuan, Jin, Lihua, Gu, Xiaodan, Chen, Shucheng, Feig, Vivian R., To, John W. F., Rondeau-Gagné, Simon, Park, Joonsuk, Schroeder, Bob C., Lu, Chien, Oh, Jin Young, Wang, Yanming, Kim, Yun-Hi, Yan, He, Sinclair, Robert, Zhou, Dongshan, Xue, Gi, Murmann, Boris, Linder, Christian, Cai, Wei, Tok, Jeffery B.-H., Chung, Jong Won, Bao, Zhenan. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science, vol.355, no.6320, 59-64.

  20. Wemyss, Alan M., Bowen, Chris, Plesse, Cédric, Vancaeyzeele, Cédric, Nguyen, Giao T.M., Vidal, Frédéric, Wan, Chaoying. Dynamic crosslinked rubbers for a green future: A material perspective. Materials science & engineering. a review journal. R, Reports, vol.141, 100561-.

  21. Zhang, Luzhi, Liu, Zenghe, Wu, Xueli, Guan, Qingbao, Chen, Shuo, Sun, Lijie, Guo, Yifan, Wang, Shuliang, Song, Jianchun, Jeffries, Eric Meade, He, Chuanglong, Qing, Feng‐Ling, Bao, Xiaoguang, You, Zhengwei. A Highly Efficient Self‐Healing Elastomer with Unprecedented Mechanical Properties. Advanced materials, vol.31, no.23, 1901402-.

  22. Huang, Jinhao, Liu, Weifeng, Qiu, Xueqing. High Performance Thermoplastic Elastomers with Biomass Lignin as Plastic Phase. ACS sustainable chemistry et engineering, vol.7, no.7, 6550-6560.

  23. Jin, Biyu, Liu, Mingzhu, Zhang, Qinghua, Zhan, Xiaoli, Chen, Fengqiu. Silicone Oil Swelling Slippery Surfaces Based on Mussel-Inspired Magnetic Nanoparticles with Multiple Self-Healing Mechanisms. Langmuir : the ACS journal of surfaces and colloids, vol.33, no.39, 10340-10350.

  24. Wang, Zhanhua, Lu, Xili, Sun, Shaojie, Yu, Changjiang, Xia, Hesheng. Preparation, characterization and properties of intrinsic self-healing elastomers. Journal of materials chemistry. B, Materials for biology and medicine, vol.7, no.32, 4876-4926.

  25. Xu, Deli, Wang, Wenwen, Zheng, Yuzhu, Tian, Shiyou, Chen, Yuanli, Lu, Zhentan, Wang, Yuedan, Liu, Ke, Wang, Dong. Graft Copolymer Elastomers with Polar Polyacrylonitrile as Semicrystalline Side Chains: Excellent Toughness and Healability. Macromolecules, vol.53, no.20, 8928-8939.

  26. Zhang, Songlin, Hao, Ayou, Liu, Zhe, Park, Jin Gyu, Liang, Richard. A Highly Stretchable Polyacrylonitrile Elastomer with Nanoreservoirs of Lubricant Using Cyano-Silver Complexes. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.19, no.6, 3871-3877.

  27. Shoeib, T., El Aribi, H., Siu, K. W. M., Hopkinson, A. C.. A Study of Silver (I) Ion−Organonitrile Complexes: Ion Structures, Binding Energies, and Substituent Effects. The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment & general theory, vol.105, no.4, 710-719.

  28. Singh, Rajender, Verma, Karan, Singh, Tejbir, Barman, P B, Sharma, Dheeraj. UV shielding with visible transparency based properties of poly (styrene-co-acrylonitrile)/Ag doped ZnO nanocomposite. Materials research express, vol.5, no.2, 025035-.

  29. Yang, Jiabao, Cao, Qi, He, Ziwei, Pu, Xingyu, Li, Tongtong, Gao, Bingyu, Li, Xuanhua. The poly(styrene-co-acrylonitrile) polymer assisted preparation of high-performance inverted perovskite solar cells with efficiency exceeding 22%. Nano energy, vol.82, 105731-.

  30. Shen, Fei, Wang, Yimin, Yuan, Xiaofang, Guo, Weihong, Wu, Chifei. Interfacial Coordination Reaction in Copper Sulfate Particles Filled Styrene-Acrylonitrile Copolymer Composites. Journal of macromolecular science. Part B : Physics, vol.47, no.1, 76-86.

  31. Guo, Xiwei, Zhang, Changgeng, Shi, Lei, Zhang, Qi, Zhu, He. Highly stretchable, recyclable, notch-insensitive, and conductive polyacrylonitrile-derived organogel. Journal of materials chemistry. A, Materials for energy and sustainability, vol.8, no.39, 20346-20353.

  32. Filippidi, Emmanouela, Cristiani, Thomas R., Eisenbach, Claus D., Waite, J. Herbert, Israelachvili, Jacob N., Ahn, B. Kollbe, Valentine, Megan T.. Toughening elastomers using mussel-inspired iron-catechol complexes. Science, vol.358, no.6362, 502-505.

  33. Mozhdehi, Davoud, Ayala, Sergio, Cromwell, Olivia R., Guan, Zhibin. Self-Healing Multiphase Polymers via Dynamic Metal–Ligand Interactions. Journal of the American Chemical Society, vol.136, no.46, 16128-16131.

  34. Zeng, F., Han, Y., Yan, Z.C., Liu, C.Y., Chen, C.F.. Supramolecular polymer gel with multi stimuli responsive, self-healing and erasable properties generated by host-guest interactions. Polymer, vol.54, no.26, 6929-6935.

  35. Yao, Shanshan, Zhu, Yong. Nanomaterial‐Enabled Stretchable Conductors: Strategies, Materials and Devices. Advanced materials, vol.27, no.9, 1480-1511.

  36. Han, Yangyang, Wu, Xiaodong, Zhang, Xinxing, Lu, Canhui. Archimedean Spiral Inspired Conductive Supramolecular Elastomer with Rapid Electrical and Mechanical Self‐Healing Capability for Sensor Application. Advanced materials technologies, vol.4, no.2, 1800424-.

  37. Xu, Feng, Zhu, Yong. Highly Conductive and Stretchable Silver Nanowire Conductors. Advanced materials, vol.24, no.37, 5117-5122.

  38. Matsuhisa, Naoji, Inoue, Daishi, Zalar, Peter, Jin, Hanbit, Matsuba, Yorishige, Itoh, Akira, Yokota, Tomoyuki, Hashizume, Daisuke, Someya, Takao. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nature materials, vol.16, no.8, 834-840.

  39. Qu, Xinxin, Niu, Wenwen, Wang, Rui, Li, Zequan, Guo, Yue, Liu, Xiaokong, Sun, Junqi. Solid-state and liquid-free elastomeric ionic conductors with autonomous self-healing ability. Materials horizons, vol.7, no.11, 2994-3004.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로