$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Reducing Heat Duty of MEA Regeneration Using a Sulfonic Acid-Functionalized Mesoporous MCM-41 Catalyst

Industrial & engineering chemistry research, v.60 no.50 = no.50, 2021년, pp.18304 - 18315  

Sun, Qiang (Joint International Center for CO2 Capture and Storage (iCCS), Provincial Hunan Key Laboratory for Cost-Effective Utilization of Fossil Fuel Aimed at Reducing CO2 Emissions, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , PR China) ,  Li, Tianhao (Joint International Center for CO2 Capture and Storage (iCCS), Provincial Hunan Key Laboratory for Cost-Effective Utilization of Fossil Fuel Aimed at Reducing CO2 Emissions, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , PR China) ,  Mao, Yu (Joint International Center for CO2 Capture and Storage (iCCS), Provincial Hunan Key Laboratory for Cost-Effective Utilization of Fossil Fuel Aimed at Reducing CO2 Emissions, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , PR China) ,  Gao, Hongxia (Department of Chemical Technology, Fa) ,  Sema, Teerawat ,  Wang, Shengyu ,  Liu, Libin ,  Liang, Zhiwu

Abstract AI-Helper 아이콘AI-Helper

Amine-based CO2 capture is a promising method to limit global CO2 emissions. However, large thermal energy consumption for CO2 desorption during amine regeneration has limited large-scale worldwide applications. Here, we show that an efficient MCM-41-SO3H-0.6 catalyst presented a superior catalytic ...

참고문헌 (54)

  1. Szulejko, Jan E., Kumar, Pawan, Deep, Akash, Kim, Ki-Hyun. Global warming projections to 2100 using simple CO2 greenhouse gas modeling and comments on CO2 climate sensitivity factor. Atmospheric pollution research, vol.8, no.1, 136-140.

  2. Bui, Mai, Adjiman, Claire S., Bardow, André, Anthony, Edward J., Boston, Andy, Brown, Solomon, Fennell, Paul S., Fuss, Sabine, Galindo, Amparo, Hackett, Leigh A., Hallett, Jason P., Herzog, Howard J., Jackson, George, Kemper, Jasmin, Krevor, Samuel, Maitland, Geoffrey C., Matuszewski, Michael, Metcalfe, Ian S., Petit, Camille, Puxty, Graeme, Reimer, Jeffrey, Reiner, David M., Rubin, Edward S., Scott, Stuart A., Shah, Nilay, Smit, Berend, Trusler, J. P. Martin, Webley, Paul, Wilcox, Jennifer, Mac Dowell, Niall. Carbon capture and storage (CCS): the way forward. Energy & environmental science, vol.11, no.5, 1062-1176.

  3. Rogelj, Joeri, den Elzen, Michel, Höhne, Niklas, Fransen, Taryn, Fekete, Hanna, Winkler, Harald, Schaeffer, Roberto, Sha, Fu, Riahi, Keywan, Meinshausen, Malte. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, vol.534, no.7609, 631-639.

  4. MacDowell, Niall, Florin, Nick, Buchard, Antoine, Hallett, Jason, Galindo, Amparo, Jackson, George, Adjiman, Claire S., Williams, Charlotte K., Shah, Nilay, Fennell, Paul. An overview of CO2 capture technologies. Energy & environmental science, vol.3, no.11, 1645-1669.

  5. Yu, Cheng-Hsiu, Huang, Chih-Hung, Tan, Chung-Sung. A Review of CO2 Capture by Absorption and Adsorption. Aerosol and air quality research, vol.12, no.5, 745-769.

  6. Yang, Xin, Rees, Robert J., Conway, William, Puxty, Graeme, Yang, Qi, Winkler, David A.. Computational Modeling and Simulation of CO2 Capture by Aqueous Amines. Chemical reviews, vol.117, no.14, 9524-9593.

  7. Dutcher, Bryce, Fan, Maohong, Russell, Armistead G.. Amine-Based CO2 Capture Technology Development from the Beginning of 2013A Review. ACS applied materials & interfaces, vol.7, no.4, 2137-2148.

  8. Luis, P.. Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination, vol.380, 93-99.

  9. Freguia, Stefano, Rochelle, Gary T.. Modeling of CO2 capture by aqueous monoethanolamine. AIChE journal, vol.49, no.7, 1676-1686.

  10. Zhang, Xiaowen, Liu, Helei, Liang, Zhiwu, Idem, Raphael, Tontiwachwuthikul, Paitoon, Jaber Al-Marri, Mohammed, Benamor, Abdelbaki. Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts. Applied energy, vol.229, 562-576.

  11. Zhang, Xiaowen, Zhang, Rui, Liu, Helei, Gao, Hongxia, Liang, Zhiwu. Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts. Applied energy, vol.218, 417-429.

  12. Ali Saleh Bairq, Zain, Gao, Hongxia, Huang, Yufei, Zhang, Haiyan, Liang, Zhiwu. Enhancing CO2 desorption performance in rich MEA solution by addition of SO4 2−/ZrO2/SiO2 bifunctional catalyst. Applied energy, vol.252, 113440-.

  13. Oexmann, Jochen, Kather, Alfons. Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption: The misguided focus on low heat of absorption solvents. International journal of greenhouse gas control, vol.4, no.1, 36-43.

  14. Puxty, Graeme, Rowland, Robert, Allport, Andrew, Yang, Qi, Bown, Mark, Burns, Robert, Maeder, Marcel, Attalla, Moetaz. Carbon Dioxide Postcombustion Capture: A Novel Screening Study of the Carbon Dioxide Absorption Performance of 76 Amines. Environmental science & technology, vol.43, no.16, 6427-6433.

  15. Liu, Helei, Xiao, Min, Liang, Zhiwu, Tontiwachwuthikul, Paitoon. The analysis of solubility, absorption kinetics of CO2 absorption into aqueous 1‐diethylamino‐2‐propanol solution. AIChE journal, vol.63, no.7, 2694-2704.

  16. Li, Qiang, Gao, Hongxia, Liu, Sen, Lv, Juan, Liang, Zhiwu. Novel thermodynamic model for vapor-liquid equilibrium of CO2 in aqueous solution of 4-(ethyl-methyl-amino)-2-butanol with designed structures. Chemical engineering science, vol.218, 115557-.

  17. Zhang, Rui, Zhang, Xiaowen, Yang, Qi, Yu, Hai, Liang, Zhiwu, Luo, Xiao. Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC). Applied energy, vol.205, 1002-1011.

  18. Saric, S., Biggs, B., Janbahan, M., Hamilton, R., Do, H.K., Mayoral, S., Haan, J.L.. An integrated device to convert carbon dioxide to energy. Applied energy, vol.183, 1346-1350.

  19. Gao, H., Zhou, L., Liang, Z., Idem, R.O., Fu, K., Sema, T., Tontiwachwuthikul, P.. Comparative studies of heat duty and total equivalent work of a new heat pump distillation with split flow process, conventional split flow process, and conventional baseline process for CO2 capture using monoethanolamine. International journal of greenhouse gas control, vol.24, 87-97.

  20. Liang, Z., Gao, H., Rongwong, W., Na, Y.. Comparative studies of stripper overhead vapor integration-based configurations for post-combustion CO2 capture. International journal of greenhouse gas control, vol.34, 75-84.

  21. Zhou, Xiaowei, Shen, Yao, Liu, Fan, Ye, Jiexu, Wang, Xinya, Zhao, Jingkai, Zhang, Shihan, Wang, Lidong, Li, Sujing, Chen, Jianmeng. A Novel Dual-Stage Phase Separation Process for CO2 Absorption into a Biphasic Solvent with Low Energy Penalty. Environmental science & technology, vol.55, no.22, 15313-15322.

  22. Jiang, Chenkai, Chen, Han, Wang, Junliang, Shen, Yao, Ye, Jiexu, Zhang, Shihan, Wang, Lidong, Chen, Jianmeng. Phase Splitting Agent Regulated Biphasic Solvent for Efficient CO2 Capture with a Low Heat Duty. Environmental science & technology, vol.54, no.12, 7601-7610.

  23. Ye, Jiexu, Jiang, Chenkai, Chen, Han, Shen, Yao, Zhang, Shihan, Wang, Lidong, Chen, Jianmeng. Novel Biphasic Solvent with Tunable Phase Separation for CO2 Capture: Role of Water Content in Mechanism, Kinetics, and Energy Penalty. Environmental science & technology, vol.53, no.8, 4470-4479.

  24. Shi, H., Naami, A., Idem, R., Tontiwachwuthikul, P.. Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents. International journal of greenhouse gas control, vol.26, 39-50.

  25. Xing, Lei, Wei, Kexin, Li, Qiangwei, Wang, Rujie, Zhang, Shihan, Wang, Lidong. One-Step Synthesized SO42-/ZrO2-HZSM-5 Solid Acid Catalyst for Carbamate Decomposition in CO2 Capture. Environmental science & technology, vol.54, no.21, 13944-13952.

  26. Zhang, Xiaowen, Huang, Yufei, Yang, Jian, Gao, Hongxia, Huang, Yangqiang, Luo, Xiao, Liang, Zhiwu, Tontiwachwuthikul, Paitoon. Amine-based CO2 capture aided by acid-basic bifunctional catalyst: Advancement of amine regeneration using metal modified MCM-41. Chemical engineering journal, vol.383, 123077-.

  27. Idem, R.; Shi, H.; Gelowitz, D.; Tontiwachwuthikul, P. Catalytic method and apparatus for separating a gaseous component from an incoming gas stream. U.S. Patent 20,130,108,532 A1, 2011. 

  28. Feng, Bo, Du, Min, Dennis, Timothy James, Anthony, Kim, Perumal, Marc Jarrod. Reduction of Energy Requirement of CO2 Desorption by Adding Acid into CO2-Loaded Solvent. Energy & fuels : an American Chemical Society journal, vol.24, no.1, 213-219.

  29. Li, Kangkang, van der Poel, Philippe, Conway, William, Jiang, Kaiqi, Puxty, Graeme, Yu, Hai, Feron, Paul. Mechanism Investigation of Advanced Metal-Ion-Mediated Amine Regeneration: A Novel Pathway to Reducing CO2 Reaction Enthalpy in Amine-Based CO2 Capture. Environmental science & technology, vol.52, no.24, 14538-14546.

  30. Alivand, Masood S., Mazaheri, Omid, Wu, Yue, Stevens, Geoffrey W., Scholes, Colin A., Mumford, Kathryn A.. Catalytic Solvent Regeneration for Energy-Efficient CO2 Capture. ACS sustainable chemistry et engineering, vol.8, no.51, 18755-18788.

  31. Xing, Lei, Wei, Kexin, Li, Yuchen, Fang, Zhimo, Li, Qiangwei, Qi, Tieyue, An, Shanlong, Zhang, Shihan, Wang, Lidong. TiO2 Coating Strategy for Robust Catalysis of the Metal-Organic Framework toward Energy-Efficient CO2 Capture. Environmental science & technology, vol.55, no.16, 11216-11224.

  32. Sahoo, Prakash C., Kumar, Manoj, Singh, Amardeep, Singh, Mahendara P., Puri, Suresh K.. Biocatalyzed Accelerated Post-combustion CO2 Capture and Stripping in Monoethanolamine. Energy & fuels : an American Chemical Society journal, vol.31, no.10, 11007-11012.

  33. Bhatti, Umair H., Shah, Abdul K., Kim, Jeong Nam, You, Jong Kyun, Choi, Soo Hyun, Lim, Dae Ho, Nam, Sungchan, Park, Yeung Ho, Baek, Il Hyun. Effects of Transition Metal Oxide Catalysts on MEA Solvent Regeneration for the Post-Combustion Carbon Capture Process. ACS sustainable chemistry et engineering, vol.5, no.7, 5862-5868.

  34. Bhatti, Umair H., Nam, Sungchan, Park, Sungyoul, Baek, Il Hyun. Performance and Mechanism of Metal Oxide Catalyst-Aided Amine Solvent Regeneration. ACS sustainable chemistry et engineering, vol.6, no.9, 12079-12087.

  35. Zhang, Xiaowen, Zhang, Xin, Liu, Helei, Li, Wensheng, Xiao, Min, Gao, Hongxia, Liang, Zhiwu. Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts. Applied energy, vol.202, 673-684.

  36. Lai, Qinghua, Toan, Sam, Assiri, Mohammed A., Cheng, Huaigang, Russell, Armistead G., Adidharma, Hertanto, Radosz, Maciej, Fan, Maohong. Catalyst-TiO(OH)2 could drastically reduce the energy consumption of CO2 capture. Nature communications, vol.9, no.1, 2672-2672.

  37. Davis, Mark E.. Ordered porous materials for emerging applications. Nature, vol.417, no.6891, 813-821.

  38. Zhang, Xiaowen, Huang, Yufei, Gao, Hongxia, Luo, Xiao, Liang, Zhiwu, Tontiwachwuthikul, Paitoon. Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathway to reduce the energy consumption in amine-based CO2 capture process. Applied energy, vol.240, 827-841.

  39. Bhatti, Umair H., Shah, Abdul K., Hussain, Amjad, Khan, Hassnain A., Park, Chan Young, Nam, Sung Chan, Baek, Il Hyun. Catalytic activity of facilely synthesized mesoporous HZSM-5 catalysts for optimizing the CO2 desorption rate from CO2-rich amine solutions. Chemical engineering journal, vol.389, 123439-.

  40. Gao, Hongxia, Huang, Yufei, Zhang, Xiaowen, Bairq, Zain Ali Saleh, Huang, Yangqiang, Tontiwachwuthikul, Paitoon, Liang, Zhiwu. Catalytic performance and mechanism of SO4 2−/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution. Applied energy, vol.259, 114179-.

  41. Sheng, X., Gao, J., Han, L., Jia, Y., Sheng, W.. One-pot synthesis of tryptophols with mesoporous MCM-41 silica catalyst functionalized with sulfonic acid groups. Microporous and mesoporous materials : the official journal of the International Zeolite Association, vol.143, no.1, 73-77.

  42. Perdew, John P., Burke, Kieron, Ernzerhof, Matthias. Generalized Gradient Approximation Made Simple. Physical review letters, vol.77, no.18, 3865-3868.

  43. Kresse, G., Furthmüller, J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, vol.6, no.1, 15-50.

  44. Kresse, G., Hafner, J.. Ab initiomolecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Physical review. B, Condensed matter, vol.49, no.20, 14251-14269.

  45. Klimeš, Jiří, Bowler, David R., Michaelides, Angelos. Van der Waals density functionals applied to solids. Physical review. B, Condensed matter and materials physics, vol.83, no.19, 195131-.

  46. Kresse, G., Joubert, D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review. B, Condensed matter and materials physics, vol.59, no.3, 1758-1775.

  47. Blöchl, Peter E., Jepsen, O., Andersen, O. K.. Improved tetrahedron method for Brillouin-zone integrations. Physical review. B, Condensed matter, vol.49, no.23, 16223-16233.

  48. Association of Official Analytical Chemists (AOAC) Methods Horwitz W. J. 1975 

  49. Leite Lima, Erika Tallyta, Santos Queiroz, Leandro, de Oliveira Pires, Luiza Helena, Simões Angélica, Rômulo, Ferreira da Costa, Carlos Emmerson, Zamian, José Roberto, da Rocha Filho, Geraldo Narciso, Luque, Rafael, Santos do Nascimento, Luís Adriano. Valorization of Mining Waste in the Synthesis of Organofunctionalized Aluminosilicates for the Esterification of Waste from Palm Oil Deodorization. ACS sustainable chemistry et engineering, vol.7, no.8, 7543-7551.

  50. Zhang, Jiao jing, Wang, Wen yi, Wang, Guo jian, Song, Hua, Wang, Lu. Preparation of Solid Superacid Catalysts and Oil Oxidative Desulfurization Using K2FeO4. Russian journal of applied chemistry, vol.91, no.9, 1513-1519.

  51. Wong, M.K., Bustam, M.A., Shariff, A.M.. Chemical speciation of CO2 absorption in aqueous monoethanolamine investigated by in situ Raman spectroscopy. International journal of greenhouse gas control, vol.39, 139-147.

  52. Caplow, Michael. Kinetics of carbamate formation and breakdown. Journal of the American Chemical Society, vol.90, no.24, 6795-6803.

  53. Zhang, Xiaowen, Hong, Jieling, Liu, Helei, Luo, Xiao, Olson, Wilfred, Tontiwachwuthikul, Paitoon, Liang, Zhiwu. SO42−/ZrO2 supported on γ‐Al2O3 as a catalyst for CO2 desorption from CO2‐loaded monoethanolamine solutions. AIChE journal, vol.64, no.11, 3988-4001.

  54. Liu, Helei, Zhang, Xin, Gao, Hongxia, Liang, Zhiwu, Idem, Raphael, Tontiwachwuthikul, Paitoon. Investigation of CO2 Regeneration in Single and Blended Amine Solvents with and without Catalyst. Industrial & engineering chemistry research, vol.56, no.27, 7656-7664.

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로