최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기ACS omega, v.6 no.48, 2021년, pp.33224 - 33230
Jeong, Heon Yong (Department of Nuclear and Quantum Engineering , Korea Advanced Institute of Science and Technology , 291, Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea) , Lee, Ju Hyuk (Department of Nuclear and Quantum Engineering , Korea Advanced Institute of Science and Technology , 291, Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea) , Lee, Sang Yoon (Department of Nuclear and Quantum Engineering , Korea Advanced Institute of Science and Technology , 291, Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea) , Lee, Jaewoo (Department of Nuclear and Quantum Engineering , Korea Advanced Institute of Science and Technology , 291, Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea) , Cho, Sung Oh
Facile approaches for creating thin-film scintillators with high spatial resolutions and variable shapes are required to broaden the applicability of high-resolution X-ray imaging. In this study, a transparent nano-polycrystalline ZnWO4 thin-film scintillator was fabricated by thermal evaporation fo...
Mizutani R. ; Suzuki Y. X-ray microtomography in biology . Micron 2012 , 43 , 104 – 115 . 10.1016/j.micron.2011.10.002 . 22036251
Dudak J. ; Zemlicka J. ; Karch J. ; Patzelt M. ; Mrzilkova J. ; Zach P. ; Hermanova Z. ; Kvacek J. ; Krejci F. High-contrast X-ray micro-radiography and micro-CT of ex-vivo soft tissue murine organs utilizing ethanol fixation and large area photon-counting detector . Sci. Rep. 2016 , 6 , 30385 – 30389 . 10.1038/srep30385 . 27461900
Adderley W. P. ; Simpson I. A. ; MacLeod G. W. Testing high-resolution X-ray computed tomography for the micromorphological analyses of archaeological soils and sediments . Archaeol. Prospect. 2001 , 8 , 107 – 112 . 10.1002/1099-0763(200106)8:2<107::AID-ARP152>3.0.CO;2-A .
Vandiver P. B. ; Ellingson W. A. ; Robinson T. K. ; Lobick J. J. ; Séguin F. H. New applications of X-radiographic imaging technologies for archaeological ceramics . Archeomaterials 1991 , 5 , 185 – 207 .
Zschech E. ; Yun W. ; Schneider G. High-resolution X-ray imaging—a powerful nondestructive technique for applications in semiconductor industry . Appl. Phys. A: Mater. Sci. Process. 2008 , 92 , 423 – 429 . 10.1007/s00339-008-4551-x .
Ketcham R. A. ; Iturrino G. J. Nondestructive high-resolution visualization and measurement of anisotropic effective porosity in complex lithologies using high-resolution X-ray computed tomography . J. Hydrol. 2005 , 302 , 92 – 106 . 10.1016/j.jhydrol.2004.06.037 .
Cao J. ; Guo Z. ; Zhu S. ; Fu Y. ; Zhang H. ; Wang Q. ; Gu Z. Preparation of lead-free two-dimensional-layered (C 8 H 17 NH 3 ) 2 SnBr 4 perovskite scintillators and their application in x-ray imaging . ACS Appl. Mater. Interfaces 2020 , 12 , 19797 – 19804 . 10.1021/acsami.0c02116 . 32249556
Martin T. ; Koch A. Recent developments in X-ray imaging with micrometer spatial resolution . J. Synchrotron Radiat. 2006 , 13 , 180 – 194 . 10.1107/S0909049506000550 . 16495618
Kobayashi M. ; Komori J. ; Shimidzu K. ; Izaki M. ; Uesugi K. ; Takeuchi A. ; Suzuki Y. Development of vertically aligned ZnO-nanowires scintillators for high spatial resolution x-ray imaging . Appl. Phys. Lett. 2015 , 106 , 081909 10.1063/1.4913867 .
Touš J. ; Horvath M. ; Pína L. ; Blažek K. ; Sopko B. High-resolution application of YAG: Ce and LuAG: Ce imaging detectors with a CCD X-ray camera . Nucl. Instrum. Methods Phys. Res., Sect. A 2008 , 591 , 264 – 267 . 10.1016/j.nima.2008.03.070 .
Cha B. K. ; Lee D. H. ; Kim B. ; Seo C.-W. ; Jeon S. ; Huh Y. ; Kim J. Y. ; Cho G. ; Kim Y. High-resolution X-ray imaging based on pixel-structured CsI: Tl scintillating screens for indirect X-ray image sensors . J. Korean Phys. Soc. 2011 , 59 , 3670 – 3673 . 10.3938/jkps.59.3670 .
Howansky A. ; Lubinsky A. R. ; Suzuki K. ; Ghose S. ; Zhao W. An apparatus and method for directly measuring the depth-dependent gain and spatial resolution of turbid scintillators . Med. Phys. 2018 , 45 , 4927 – 4941 . 10.1002/mp.13177 . 30193407
Cecilia A. ; Rack A. ; Douissard P.-A. ; Martin T. ; dos Santos Rolo T. ; Vagovič P. ; Hamann E. ; Van de Kamp T. ; Riedel A. ; Fiederle M. LPE grown LSO: Tb scintillator films for high-resolution X-ray imaging applications at synchrotron light sources . Nucl. Instrum. Methods Phys. Res., Sect. A 2011 , 648 , S321 – S323 . 10.1016/j.nima.2010.10.150 .
Tous J. ; Blazek K. ; Nikl M. ; Mares J. In Single crystal scintillator plates used for light weight material X-ray radiography ; Journal of Physics: Conference Series, IOP Publishing : 2013 ; p 192017 .
Li G. ; Luo S. ; Yan Y. ; Gu N. A method of extending the depth of focus of the high-resolution X-ray imaging system employing optical lens and scintillator: a phantom study . Biomed. eng. online 2015 , 14 , 120 – 114 . 10.1186/1475-925X-14-S1-S15 .
Jung P. G. ; Lee C. H. ; Bae K. M. ; Lee J. M. ; Lee S. M. ; Lim C. H. ; Yun S. ; Kim H. K. ; Ko J. S. Microdome-gooved Gd 2 O 2 S: Tb scintillator for flexible and high resolution digital radiography . Opt. Express 2010 , 18 , 14850 – 14858 . 10.1364/OE.18.014850 . 20639972
Cha B. K. ; Lee S. J. ; Muralidharan P. ; Kim D. K. ; Kim J. Y. ; Cho G. ; Jeon S. ; Huh Y. Novel nanocrystalline Gd2O3 (Eu) scintillator screens with a micro-pixel structure for high spatial resolution X-ray imaging . Nucl. Instrum. Methods Phys. Res., Sect. A 2011 , 652 , 717 – 720 . 10.1016/j.nima.2011.01.024 .
Sen S. ; Tyagi M. ; Sharma K. ; Sarkar P. S. ; Sarkar S. ; Basak C. B. ; Pitale S. ; Ghosh M. ; Gadkari S. C. Organic–Inorganic Composite Films Based on Gd 3 Ga 3 Al 2 O 12 : Ce Scintillator Nanoparticles for X-ray Imaging Applications . ACS Appl. Mater. Interfaces 2017 , 9 , 37310 – 37320 . 10.1021/acsami.7b11289 . 28990750
Kang Z. ; Zhang Y. ; Menkara H. ; Wagner B. K. ; Summers C. J. ; Lawrence W. ; Nagarkar V. CdTe quantum dots and polymer nanocomposites for x-ray scintillation and imaging . Appl. Phys. Lett. 2011 , 98 , 181914 10.1063/1.3589366 . 21629562
Zhang Y. ; Sun R. ; Ou X. ; Fu K. ; Chen Q. ; Ding Y. ; Xu L.-J. ; Liu L. ; Han Y. ; Malko A. V. ; Liu X. ; Yang H. ; Bakr O. M. ; Liu H. ; Mohammed O. F. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens . ACS Nano 2019 , 13 , 2520 – 2525 . 10.1021/acsnano.8b09484 . 30721023
Sedov V. ; Kouznetsov S. ; Martyanov A. ; Proydakova V. ; Ralchenko V. ; Khomich A. ; Voronov V. ; Batygov S. ; Kamenskikh I. ; Spassky D. ; Savin S. ; Fedorov P. Diamond–rare earth composites with embedded NaGdF 4 : Eu nanoparticles as robust photo-and X-ray-luminescent materials for radiation monitoring screens . ACS Appl. Nano Mater. 2020 , 3 , 1324 – 1331 . 10.1021/acsanm.9b02175 .
Jeong H. Y. ; Lim H. S. ; Lee J. H. ; Heo J. ; Kim H. N. ; Cho S. O. ZnWO 4 Nanoparticle Scintillators for High Resolution X-ray Imaging . Nanomaterials 2020 , 10 , 1721 10.3390/nano10091721 .
Cha B. K. ; Lee S. J. ; Muralidharan P. ; Kim J. Y. ; Kim D. K. ; Cho G. Characterization and imaging performance of nanoscintillator screen for high resolution X-ray imaging detectors . Nucl. Instrum. Methods Phys. Res., Sect. A 2011 , 633 , S294 – S296 . 10.1016/j.nima.2010.06.193 .
Liaparinos P. F. Optical diffusion performance of nanophosphor-based materials for use in medical imaging . J. Biomed. Opt 2012 , 17 , 126013 10.1117/1.JBO.17.12.126013 . 23212124
Kumi Barimah E. ; Rahayu S. ; Ziarko M. W. ; Bamiedakis N. ; White I. H. ; Penty R. V. ; Kale G. M. ; Jose G. Erbium-Doped Nanoparticle–Polymer Composite Thin Films for Photonic Applications: Structural and Optical Properties . ACS Omega 2020 , 5 , 9224 – 9232 . 10.1021/acsomega.0c00040 . 32363274
Koch A. ; Raven C. ; Spanne P. ; Snigirev A. X-ray imaging with submicrometer resolution employing transparent luminescent screens . J. Opt. Soc. Am. A 1998 , 15 , 1940 – 1951 . 10.1364/JOSAA.15.001940 .
Buryi M. ; Laguta V. ; Nikl M. ; Gorbenko V. ; Zorenko T. ; Zorenko Y. LPE growth and study of the Ce 3+ incorporation in LuAlO 3 : Ce single crystalline film scintillators . CrystEngComm 2019 , 21 , 3313 – 3321 . 10.1039/C9CE00193J .
Martin T. ; Douissard P.-A. ; Couchaud M. ; Cecilia A. ; Baumbach T. ; Dupre K. ; Rack A. LSO-based single crystal film scintillator for synchrotron-based hard X-ray micro-imaging . IEEE Trans. Nucl. Sci. 2009 , 56 , 1412 – 1418 . 10.1109/TNS.2009.2015878 .
Gorbenko V. ; Zorenko T. ; Witkiewicz S. ; Paprocki K. ; Sidletskiy O. ; Fedorov A. ; Bilski P. ; Twardak A. ; Zorenko Y. LPE Growth of Single Crystalline Film Scintillators Based on Ce 3+ Doped Tb 3– x Gd x Al 5– y Ga y O 12 Mixed Garnets . Crystals 2017 , 7 , 262 10.3390/cryst7090262 .
Witkiewicz-Lukaszek S. ; Gorbenko V. ; Zorenko T. ; Sidletskiy O. ; Arhipov P. ; Fedorov A. ; Mares J. A. ; Kucerkova R. ; Nikl M. ; Zorenko Y. Liquid phase epitaxy growth of high-performance composite scintillators based on single crystalline films and crystals of LuAG . CrystEngComm 2020 , 22 , 3713 – 3724 . 10.1039/D0CE00266F .
Kameshima T. ; Takeuchi A. ; Uesugi K. ; Kudo T. ; Kohmura Y. ; Tamasaku K. ; Muramatsu K. ; Yanagitani T. ; Yabashi M. ; Hatsui T. Development of an X-ray imaging detector to resolve 200 nm line-and-space patterns by using transparent ceramics layers bonded by solid-state diffusion . Opt. Lett. 2019 , 44 , 1403 – 1406 . 10.1364/OL.44.001403 . 30874661
Garadkar K. ; Ghule L. ; Sapnar K. ; Dhole S. A facile synthesis of ZnWO 4 nanoparticles by microwave assisted technique and its application in photocatalysis . Mater. Res. Bull. 2013 , 48 , 1105 – 1109 . 10.1016/j.materresbull.2012.12.002 .
Oi T. ; Takagi K. ; Fukazawa T. Scintillation study of ZnWO 4 single crystals . Appl. Phys. Lett. 1980 , 36 , 278 – 279 . 10.1063/1.91452 .
Klamra W. ; Szczesniak T. ; Moszynski M. ; Iwanowska J. ; Swiderski L. ; Syntfeld-Kazuch A. ; Shlegel V. N. ; Vasiliev Y. V. ; Galashov E. N. Properties of CdWO 4 and ZnWO 4 scintillators at liquid nitrogen temperature . J. Instrum. 2012 , 7 , P03011 10.1088/1748-0221/7/03/P03011 .
Kowalski Z. ; Kaczmarek S. M. ; Drozdowski W. ; Witkowski M. E. ; Makowski M. ; Brylew K. ; Berkowski M. ; Głowacki M. Radioluminescence, low temperature thermoluminescence and scintillation properties of Ca and Eu doped ZnWO 4 single crystals . Radiat. Meas. 2018 , 118 , 1 – 7 . 10.1016/j.radmeas.2018.08.002 .
Holl I. ; Lorenz E. ; Mageras G. A measurement of the light yield of common inorganic scintillators . IEEE Trans. Nucl. Sci. 1988 , 35 , 105 – 109 . 10.1109/23.12684 .
He Q. ; Zhou C. ; Xu L. ; Lee S. ; Lin X. ; Neu J. ; Worku M. ; Chaaban M. ; Ma B. Highly stable organic antimony halide crystals for X-ray scintillation . ACS Mater. Lett. 2020 , 2 , 633 – 638 . 10.1021/acsmaterialslett.0c00133 .
Yanagida T. ; Kamada K. ; Fujimoto Y. ; Yagi H. ; Yanagitani T. Comparative study of ceramic and single crystal Ce: GAGG scintillator . Opt. Mater. 2013 , 35 , 2480 – 2485 . 10.1016/j.optmat.2013.07.002 .
Habisreutinger S. N. ; McMeekin D. P. ; Snaith H. J. ; Nicholas R. J. Research Update: Strategies for improving the stability of perovskite solar cells . APL Mater. 2016 , 4 , 091503 10.1063/1.4961210 .
Zhang H. ; Yang Z. ; Zhou M. ; Zhao L. ; Jiang T. ; Yang H. ; Yu X. ; Qiu J. ; Yang Y. M. ; Xu X. Reproducible X-ray Imaging with a Perovskite Nanocrystal Scintillator Embedded in a Transparent Amorphous Network Structure . Adv. Mater. 2021 , 33 , 2102529 10.1002/adma.202102529 .
Wang X. ; Fan Z. ; Yu H. ; Zhang H. ; Wang J. Characterization of ZnWO 4 Raman crystal . Opt. Mater. Express 2017 , 7 , 1732 – 1744 . 10.1364/OME.7.001732 .
Trots D. ; Senyshyn A. ; Vasylechko L. ; Niewa R. ; Vad T. ; Mikhailik V. ; Kraus H. Crystal structure of ZnWO 4 scintillator material in the range of 3–1423 K . J. Condens. Matter Phys. 2009 , 21 , 325402 10.1088/0953-8984/21/32/325402 .
Grassmann H. ; Moser H.-G. ; Lorenz E. Scintillation properties of ZnWO 4 . J. Lumin. 1985 , 33 , 109 – 113 . 10.1016/0022-2313(85)90034-1 .
Dkhilalli F. ; Borchani S. M. ; Rasheed M. ; Barille R. ; Guidara K. ; Megdiche M. Structural, dielectric, and optical properties of the zinc tungstate ZnWO 4 compound . J. Mater. Sci.: Mater. Electron. 2018 , 29 , 6297 – 6307 . 10.1007/s10854-018-8609-z .
Kraus H. ; Mikhailik V. B. ; Ramachers Y. ; Day D. ; Hutton K. B. ; Telfer J. Feasibility study of a ZnWO 4 scintillator for exploiting materials signature in cryogenic WIMP dark matter searches . Phys. Lett. B 2005 , 610 , 37 – 44 . 10.1016/j.physletb.2005.01.095 .
Khyzhun O. ; Bekenev V. ; Atuchin V. ; Galashov E. ; Shlegel V. Electronic properties of ZnWO 4 based on ab initio FP-LAPW band-structure calculations and X-ray spectroscopy data . Mater. Chem. Phys. 2013 , 140 , 588 – 595 . 10.1016/j.matchemphys.2013.04.010 .
Bouhssira N. ; Abed S. ; Tomasella E. ; Cellier J. ; Mosbah A. ; Aida M. ; Jacquet M. Influence of annealing temperature on the properties of ZnO thin films deposited by thermal evaporation . Appl. Surf. Sci. 2006 , 252 , 5594 – 5597 . 10.1016/j.apsusc.2005.12.134 .
Lee W.-J. ; Cho D.-H. ; Do Kim Y. ; Choi M.-W. ; Choi J. C. ; Chung Y.-D. Thermally evaporated amorphous InZnO thin film applicable to transparent conducting oxide for solar cells . J. Alloys Compd. 2019 , 806 , 976 – 982 . 10.1016/j.jallcom.2019.07.321 .
Suhail M. H. ; Ibrahim I. M. ; Mohan Rao G. Characterization and gas sensitivity of cadimum oxide thin films prepared by thermal evaporation technique . J. Electron Devices 2012 , 13 , 965 – 974 .
Fakhri M. A. Annealing effects on opto-electronic properties of Ag 2 O films growth using thermal evaporation techniques . Int. J. Nanoelectron. Mater. 2016 , 9 , 93 – 102 .
Vaynzof Y. The future of perovskite photovoltaics—thermal evaporation or solution processing? . Adv. Energy Mater. 2020 , 10 , 2003073 10.1002/aenm.202003073 .
Jin H.-C. ; Abelson J. R. ; Erhardt M. K. ; Nuzzo R. G. Soft lithographic fabrication of an image sensor array on a curved substrate . J. Vac. Sci. Technol., B 2004 , 22 , 2548 – 2551 . 10.1116/1.1795249 .
Park J. ; Fujita H. ; Kim B. Fabrication of metallic microstructure on curved substrate by optical soft lithography and copper electroplating . Sens. Actuators A: Phys. 2011 , 168 , 105 – 111 . 10.1016/j.sna.2011.03.024 .
de León A. G. ; Dirix Y. ; Staedler Y. ; Feldman K. ; Hähner G. ; Caseri W. R. ; Smith P. Method for fabricating pixelated, multicolor polarizing films . Appl. Opt. 2000 , 39 , 4847 – 4851 . 10.1364/AO.39.004847 . 18350078
Pugliese M. ; Prontera C. T. ; Polimeno L. ; Lerario G. ; Giannuzzi R. ; Esposito M. ; Carallo S. ; Costa D. ; De Marco L. ; De Giorgi M. ; Gigli G. ; Sanvitto S. ; Maiorano V. Highly Reflective Periodic Nanostructure Based on Thermal Evaporated Tungsten Oxide and Calcium Fluoride for Advanced Photonic Applications . ACS Appl. Nano Mater. 2020 , 3 , 10978 – 10985 . 10.1021/acsanm.0c02206 .
Drezner Y. ; Berger S. ; Hefetz M. A correlation between microstructure, composition and optical transparency of CVD-ZnS . Mater. Sci. Eng.: B 2001 , 87 , 59 – 65 . 10.1016/S0921-5107(01)00701-2 .
Pappas J. M. ; Dong X. Direct 3D Printing of Silica Doped Transparent Magnesium Aluminate Spinel Ceramics . Materials 2020 , 13 , 4810 10.3390/ma13214810 .
Morita K. ; Kim B.-N. ; Hiraga K. ; Yoshida H. Fabrication of transparent MgAl 2 O 4 spinel polycrystal by spark plasma sintering processing . Scr. Mater. 2008 , 58 , 1114 – 1117 . 10.1016/j.scriptamat.2008.02.008 .
Furuse H. ; Horiuchi N. ; Kim B.-N. Transparent non-cubic laser ceramics with fine microstructure . Sci. Rep. 2019 , 9 , 10300 – 10307 . 10.1038/s41598-019-46616-8 . 31311952
Roy S. ; Lingertat H. ; Brecher C. ; Sarin V. Optical properties of anisotropic polycrystalline Ce 3+ activated LSO . Opt. Mater. 2013 , 35 , 827 – 832 . 10.1016/j.optmat.2012.09.039 .
Kim B.-N. ; Hiraga K. ; Morita K. ; Yoshida H. ; Miyazaki T. ; Kagawa Y. Microstructure and optical properties of transparent alumina . Acta Mater. 2009 , 57 , 1319 – 1326 . 10.1016/j.actamat.2008.11.010 .
Zhang H. ; Yang J. ; Gray S. ; Brown J. A. ; Ketcham T. D. ; Baker D. E. ; Carapella A. ; Davis R. W. ; Arroyo J. G. ; Nolan D. A. Transparent Er 3+ -doped Y 2 O 3 ceramics with long optical coherence lifetime . ACS Omega 2017 , 2 , 3739 – 3744 . 10.1021/acsomega.7b00541 . 31457688
Lempicki A. ; Brecher C. ; Szupryczynski P. ; Lingertat H. ; Nagarkar V. V. ; Tipnis S. V. ; Miller S. R. A new lutetia-based ceramic scintillator for X-ray imaging . Nucl. Instrum. Methods Phys. Res., Sect. A 2002 , 488 , 579 – 590 . 10.1016/S0168-9002(02)00556-9 .
Sabet H. ; Bhandari H. B. ; Kudrolli H. ; Nagarkar V. V. Fabrication of X-ray/gamma-ray detector by growth of microcolumnar CsI: Tl onto silicon photomultipliers . Phys. Procedia 2012 , 37 , 1523 – 1530 . 10.1016/j.phpro.2012.04.104 .
van Breemen A. J. J. M. ; Simon M. ; Tousignant O. ; Shanmugam S. ; van der Steen J.-L. ; Akkerman H. B. ; Kronemeijer A. ; Ruetten W. ; Raaijmakers R. ; Alving L. ; Jacobs J. ; Malinowski P. E. ; de Roose F. ; Gelinck G. H. Curved digital X-ray detectors . npj Flex. Electron. 2020 , 4 , 22 – 28 . 10.1038/s41528-020-00084-7 .
Zhao J. ; Zhao L. ; Deng Y. ; Xiao X. ; Ni Z. ; Xu S. ; Huang J. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays . Nat. Photonics 2020 , 14 , 612 – 617 . 10.1038/s41566-020-0678-x .
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.