$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A Transparent Nano-Polycrystalline ZnWO4 Thin-Film Scintillator for High-Resolution X-ray Imaging 원문보기

ACS omega, v.6 no.48, 2021년, pp.33224 - 33230  

Jeong, Heon Yong (Department of Nuclear and Quantum Engineering , Korea Advanced Institute of Science and Technology , 291, Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea) ,  Lee, Ju Hyuk (Department of Nuclear and Quantum Engineering , Korea Advanced Institute of Science and Technology , 291, Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea) ,  Lee, Sang Yoon (Department of Nuclear and Quantum Engineering , Korea Advanced Institute of Science and Technology , 291, Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea) ,  Lee, Jaewoo (Department of Nuclear and Quantum Engineering , Korea Advanced Institute of Science and Technology , 291, Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea) ,  Cho, Sung Oh

Abstract AI-Helper 아이콘AI-Helper

Facile approaches for creating thin-film scintillators with high spatial resolutions and variable shapes are required to broaden the applicability of high-resolution X-ray imaging. In this study, a transparent nano-polycrystalline ZnWO4 thin-film scintillator was fabricated by thermal evaporation fo...

참고문헌 (66)

  1. Mizutani R. ; Suzuki Y. X-ray microtomography in biology . Micron 2012 , 43 , 104 – 115 . 10.1016/j.micron.2011.10.002 . 22036251 

  2. Dudak J. ; Zemlicka J. ; Karch J. ; Patzelt M. ; Mrzilkova J. ; Zach P. ; Hermanova Z. ; Kvacek J. ; Krejci F. High-contrast X-ray micro-radiography and micro-CT of ex-vivo soft tissue murine organs utilizing ethanol fixation and large area photon-counting detector . Sci. Rep. 2016 , 6 , 30385 – 30389 . 10.1038/srep30385 . 27461900 

  3. Adderley W. P. ; Simpson I. A. ; MacLeod G. W. Testing high-resolution X-ray computed tomography for the micromorphological analyses of archaeological soils and sediments . Archaeol. Prospect. 2001 , 8 , 107 – 112 . 10.1002/1099-0763(200106)8:2<107::AID-ARP152>3.0.CO;2-A . 

  4. Vandiver P. B. ; Ellingson W. A. ; Robinson T. K. ; Lobick J. J. ; Séguin F. H. New applications of X-radiographic imaging technologies for archaeological ceramics . Archeomaterials 1991 , 5 , 185 – 207 . 

  5. Zschech E. ; Yun W. ; Schneider G. High-resolution X-ray imaging—a powerful nondestructive technique for applications in semiconductor industry . Appl. Phys. A: Mater. Sci. Process. 2008 , 92 , 423 – 429 . 10.1007/s00339-008-4551-x . 

  6. Ketcham R. A. ; Iturrino G. J. Nondestructive high-resolution visualization and measurement of anisotropic effective porosity in complex lithologies using high-resolution X-ray computed tomography . J. Hydrol. 2005 , 302 , 92 – 106 . 10.1016/j.jhydrol.2004.06.037 . 

  7. Cao J. ; Guo Z. ; Zhu S. ; Fu Y. ; Zhang H. ; Wang Q. ; Gu Z. Preparation of lead-free two-dimensional-layered (C 8 H 17 NH 3 ) 2 SnBr 4 perovskite scintillators and their application in x-ray imaging . ACS Appl. Mater. Interfaces 2020 , 12 , 19797 – 19804 . 10.1021/acsami.0c02116 . 32249556 

  8. Martin T. ; Koch A. Recent developments in X-ray imaging with micrometer spatial resolution . J. Synchrotron Radiat. 2006 , 13 , 180 – 194 . 10.1107/S0909049506000550 . 16495618 

  9. Kobayashi M. ; Komori J. ; Shimidzu K. ; Izaki M. ; Uesugi K. ; Takeuchi A. ; Suzuki Y. Development of vertically aligned ZnO-nanowires scintillators for high spatial resolution x-ray imaging . Appl. Phys. Lett. 2015 , 106 , 081909 10.1063/1.4913867 . 

  10. Touš J. ; Horvath M. ; Pína L. ; Blažek K. ; Sopko B. High-resolution application of YAG: Ce and LuAG: Ce imaging detectors with a CCD X-ray camera . Nucl. Instrum. Methods Phys. Res., Sect. A 2008 , 591 , 264 – 267 . 10.1016/j.nima.2008.03.070 . 

  11. Cha B. K. ; Lee D. H. ; Kim B. ; Seo C.-W. ; Jeon S. ; Huh Y. ; Kim J. Y. ; Cho G. ; Kim Y. High-resolution X-ray imaging based on pixel-structured CsI: Tl scintillating screens for indirect X-ray image sensors . J. Korean Phys. Soc. 2011 , 59 , 3670 – 3673 . 10.3938/jkps.59.3670 . 

  12. Howansky A. ; Lubinsky A. R. ; Suzuki K. ; Ghose S. ; Zhao W. An apparatus and method for directly measuring the depth-dependent gain and spatial resolution of turbid scintillators . Med. Phys. 2018 , 45 , 4927 – 4941 . 10.1002/mp.13177 . 30193407 

  13. Cecilia A. ; Rack A. ; Douissard P.-A. ; Martin T. ; dos Santos Rolo T. ; Vagovič P. ; Hamann E. ; Van de Kamp T. ; Riedel A. ; Fiederle M. LPE grown LSO: Tb scintillator films for high-resolution X-ray imaging applications at synchrotron light sources . Nucl. Instrum. Methods Phys. Res., Sect. A 2011 , 648 , S321 – S323 . 10.1016/j.nima.2010.10.150 . 

  14. Tous J. ; Blazek K. ; Nikl M. ; Mares J. In Single crystal scintillator plates used for light weight material X-ray radiography ; Journal of Physics: Conference Series, IOP Publishing : 2013 ; p 192017 . 

  15. Li G. ; Luo S. ; Yan Y. ; Gu N. A method of extending the depth of focus of the high-resolution X-ray imaging system employing optical lens and scintillator: a phantom study . Biomed. eng. online 2015 , 14 , 120 – 114 . 10.1186/1475-925X-14-S1-S15 . 

  16. Jung P. G. ; Lee C. H. ; Bae K. M. ; Lee J. M. ; Lee S. M. ; Lim C. H. ; Yun S. ; Kim H. K. ; Ko J. S. Microdome-gooved Gd 2 O 2 S: Tb scintillator for flexible and high resolution digital radiography . Opt. Express 2010 , 18 , 14850 – 14858 . 10.1364/OE.18.014850 . 20639972 

  17. Cha B. K. ; Lee S. J. ; Muralidharan P. ; Kim D. K. ; Kim J. Y. ; Cho G. ; Jeon S. ; Huh Y. Novel nanocrystalline Gd2O3 (Eu) scintillator screens with a micro-pixel structure for high spatial resolution X-ray imaging . Nucl. Instrum. Methods Phys. Res., Sect. A 2011 , 652 , 717 – 720 . 10.1016/j.nima.2011.01.024 . 

  18. Sen S. ; Tyagi M. ; Sharma K. ; Sarkar P. S. ; Sarkar S. ; Basak C. B. ; Pitale S. ; Ghosh M. ; Gadkari S. C. Organic–Inorganic Composite Films Based on Gd 3 Ga 3 Al 2 O 12 : Ce Scintillator Nanoparticles for X-ray Imaging Applications . ACS Appl. Mater. Interfaces 2017 , 9 , 37310 – 37320 . 10.1021/acsami.7b11289 . 28990750 

  19. Kang Z. ; Zhang Y. ; Menkara H. ; Wagner B. K. ; Summers C. J. ; Lawrence W. ; Nagarkar V. CdTe quantum dots and polymer nanocomposites for x-ray scintillation and imaging . Appl. Phys. Lett. 2011 , 98 , 181914 10.1063/1.3589366 . 21629562 

  20. Zhang Y. ; Sun R. ; Ou X. ; Fu K. ; Chen Q. ; Ding Y. ; Xu L.-J. ; Liu L. ; Han Y. ; Malko A. V. ; Liu X. ; Yang H. ; Bakr O. M. ; Liu H. ; Mohammed O. F. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens . ACS Nano 2019 , 13 , 2520 – 2525 . 10.1021/acsnano.8b09484 . 30721023 

  21. Sedov V. ; Kouznetsov S. ; Martyanov A. ; Proydakova V. ; Ralchenko V. ; Khomich A. ; Voronov V. ; Batygov S. ; Kamenskikh I. ; Spassky D. ; Savin S. ; Fedorov P. Diamond–rare earth composites with embedded NaGdF 4 : Eu nanoparticles as robust photo-and X-ray-luminescent materials for radiation monitoring screens . ACS Appl. Nano Mater. 2020 , 3 , 1324 – 1331 . 10.1021/acsanm.9b02175 . 

  22. Jeong H. Y. ; Lim H. S. ; Lee J. H. ; Heo J. ; Kim H. N. ; Cho S. O. ZnWO 4 Nanoparticle Scintillators for High Resolution X-ray Imaging . Nanomaterials 2020 , 10 , 1721 10.3390/nano10091721 . 

  23. Cha B. K. ; Lee S. J. ; Muralidharan P. ; Kim J. Y. ; Kim D. K. ; Cho G. Characterization and imaging performance of nanoscintillator screen for high resolution X-ray imaging detectors . Nucl. Instrum. Methods Phys. Res., Sect. A 2011 , 633 , S294 – S296 . 10.1016/j.nima.2010.06.193 . 

  24. Liaparinos P. F. Optical diffusion performance of nanophosphor-based materials for use in medical imaging . J. Biomed. Opt 2012 , 17 , 126013 10.1117/1.JBO.17.12.126013 . 23212124 

  25. Kumi Barimah E. ; Rahayu S. ; Ziarko M. W. ; Bamiedakis N. ; White I. H. ; Penty R. V. ; Kale G. M. ; Jose G. Erbium-Doped Nanoparticle–Polymer Composite Thin Films for Photonic Applications: Structural and Optical Properties . ACS Omega 2020 , 5 , 9224 – 9232 . 10.1021/acsomega.0c00040 . 32363274 

  26. Koch A. ; Raven C. ; Spanne P. ; Snigirev A. X-ray imaging with submicrometer resolution employing transparent luminescent screens . J. Opt. Soc. Am. A 1998 , 15 , 1940 – 1951 . 10.1364/JOSAA.15.001940 . 

  27. Buryi M. ; Laguta V. ; Nikl M. ; Gorbenko V. ; Zorenko T. ; Zorenko Y. LPE growth and study of the Ce 3+ incorporation in LuAlO 3 : Ce single crystalline film scintillators . CrystEngComm 2019 , 21 , 3313 – 3321 . 10.1039/C9CE00193J . 

  28. Martin T. ; Douissard P.-A. ; Couchaud M. ; Cecilia A. ; Baumbach T. ; Dupre K. ; Rack A. LSO-based single crystal film scintillator for synchrotron-based hard X-ray micro-imaging . IEEE Trans. Nucl. Sci. 2009 , 56 , 1412 – 1418 . 10.1109/TNS.2009.2015878 . 

  29. Gorbenko V. ; Zorenko T. ; Witkiewicz S. ; Paprocki K. ; Sidletskiy O. ; Fedorov A. ; Bilski P. ; Twardak A. ; Zorenko Y. LPE Growth of Single Crystalline Film Scintillators Based on Ce 3+ Doped Tb 3– x Gd x Al 5– y Ga y O 12 Mixed Garnets . Crystals 2017 , 7 , 262 10.3390/cryst7090262 . 

  30. Witkiewicz-Lukaszek S. ; Gorbenko V. ; Zorenko T. ; Sidletskiy O. ; Arhipov P. ; Fedorov A. ; Mares J. A. ; Kucerkova R. ; Nikl M. ; Zorenko Y. Liquid phase epitaxy growth of high-performance composite scintillators based on single crystalline films and crystals of LuAG . CrystEngComm 2020 , 22 , 3713 – 3724 . 10.1039/D0CE00266F . 

  31. Kameshima T. ; Takeuchi A. ; Uesugi K. ; Kudo T. ; Kohmura Y. ; Tamasaku K. ; Muramatsu K. ; Yanagitani T. ; Yabashi M. ; Hatsui T. Development of an X-ray imaging detector to resolve 200 nm line-and-space patterns by using transparent ceramics layers bonded by solid-state diffusion . Opt. Lett. 2019 , 44 , 1403 – 1406 . 10.1364/OL.44.001403 . 30874661 

  32. Garadkar K. ; Ghule L. ; Sapnar K. ; Dhole S. A facile synthesis of ZnWO 4 nanoparticles by microwave assisted technique and its application in photocatalysis . Mater. Res. Bull. 2013 , 48 , 1105 – 1109 . 10.1016/j.materresbull.2012.12.002 . 

  33. Oi T. ; Takagi K. ; Fukazawa T. Scintillation study of ZnWO 4 single crystals . Appl. Phys. Lett. 1980 , 36 , 278 – 279 . 10.1063/1.91452 . 

  34. Klamra W. ; Szczesniak T. ; Moszynski M. ; Iwanowska J. ; Swiderski L. ; Syntfeld-Kazuch A. ; Shlegel V. N. ; Vasiliev Y. V. ; Galashov E. N. Properties of CdWO 4 and ZnWO 4 scintillators at liquid nitrogen temperature . J. Instrum. 2012 , 7 , P03011 10.1088/1748-0221/7/03/P03011 . 

  35. Kowalski Z. ; Kaczmarek S. M. ; Drozdowski W. ; Witkowski M. E. ; Makowski M. ; Brylew K. ; Berkowski M. ; Głowacki M. Radioluminescence, low temperature thermoluminescence and scintillation properties of Ca and Eu doped ZnWO 4 single crystals . Radiat. Meas. 2018 , 118 , 1 – 7 . 10.1016/j.radmeas.2018.08.002 . 

  36. Holl I. ; Lorenz E. ; Mageras G. A measurement of the light yield of common inorganic scintillators . IEEE Trans. Nucl. Sci. 1988 , 35 , 105 – 109 . 10.1109/23.12684 . 

  37. He Q. ; Zhou C. ; Xu L. ; Lee S. ; Lin X. ; Neu J. ; Worku M. ; Chaaban M. ; Ma B. Highly stable organic antimony halide crystals for X-ray scintillation . ACS Mater. Lett. 2020 , 2 , 633 – 638 . 10.1021/acsmaterialslett.0c00133 . 

  38. Yanagida T. ; Kamada K. ; Fujimoto Y. ; Yagi H. ; Yanagitani T. Comparative study of ceramic and single crystal Ce: GAGG scintillator . Opt. Mater. 2013 , 35 , 2480 – 2485 . 10.1016/j.optmat.2013.07.002 . 

  39. Habisreutinger S. N. ; McMeekin D. P. ; Snaith H. J. ; Nicholas R. J. Research Update: Strategies for improving the stability of perovskite solar cells . APL Mater. 2016 , 4 , 091503 10.1063/1.4961210 . 

  40. Zhang H. ; Yang Z. ; Zhou M. ; Zhao L. ; Jiang T. ; Yang H. ; Yu X. ; Qiu J. ; Yang Y. M. ; Xu X. Reproducible X-ray Imaging with a Perovskite Nanocrystal Scintillator Embedded in a Transparent Amorphous Network Structure . Adv. Mater. 2021 , 33 , 2102529 10.1002/adma.202102529 . 

  41. Wang X. ; Fan Z. ; Yu H. ; Zhang H. ; Wang J. Characterization of ZnWO 4 Raman crystal . Opt. Mater. Express 2017 , 7 , 1732 – 1744 . 10.1364/OME.7.001732 . 

  42. Trots D. ; Senyshyn A. ; Vasylechko L. ; Niewa R. ; Vad T. ; Mikhailik V. ; Kraus H. Crystal structure of ZnWO 4 scintillator material in the range of 3–1423 K . J. Condens. Matter Phys. 2009 , 21 , 325402 10.1088/0953-8984/21/32/325402 . 

  43. Grassmann H. ; Moser H.-G. ; Lorenz E. Scintillation properties of ZnWO 4 . J. Lumin. 1985 , 33 , 109 – 113 . 10.1016/0022-2313(85)90034-1 . 

  44. Dkhilalli F. ; Borchani S. M. ; Rasheed M. ; Barille R. ; Guidara K. ; Megdiche M. Structural, dielectric, and optical properties of the zinc tungstate ZnWO 4 compound . J. Mater. Sci.: Mater. Electron. 2018 , 29 , 6297 – 6307 . 10.1007/s10854-018-8609-z . 

  45. Kraus H. ; Mikhailik V. B. ; Ramachers Y. ; Day D. ; Hutton K. B. ; Telfer J. Feasibility study of a ZnWO 4 scintillator for exploiting materials signature in cryogenic WIMP dark matter searches . Phys. Lett. B 2005 , 610 , 37 – 44 . 10.1016/j.physletb.2005.01.095 . 

  46. Khyzhun O. ; Bekenev V. ; Atuchin V. ; Galashov E. ; Shlegel V. Electronic properties of ZnWO 4 based on ab initio FP-LAPW band-structure calculations and X-ray spectroscopy data . Mater. Chem. Phys. 2013 , 140 , 588 – 595 . 10.1016/j.matchemphys.2013.04.010 . 

  47. Bouhssira N. ; Abed S. ; Tomasella E. ; Cellier J. ; Mosbah A. ; Aida M. ; Jacquet M. Influence of annealing temperature on the properties of ZnO thin films deposited by thermal evaporation . Appl. Surf. Sci. 2006 , 252 , 5594 – 5597 . 10.1016/j.apsusc.2005.12.134 . 

  48. Lee W.-J. ; Cho D.-H. ; Do Kim Y. ; Choi M.-W. ; Choi J. C. ; Chung Y.-D. Thermally evaporated amorphous InZnO thin film applicable to transparent conducting oxide for solar cells . J. Alloys Compd. 2019 , 806 , 976 – 982 . 10.1016/j.jallcom.2019.07.321 . 

  49. Suhail M. H. ; Ibrahim I. M. ; Mohan Rao G. Characterization and gas sensitivity of cadimum oxide thin films prepared by thermal evaporation technique . J. Electron Devices 2012 , 13 , 965 – 974 . 

  50. Fakhri M. A. Annealing effects on opto-electronic properties of Ag 2 O films growth using thermal evaporation techniques . Int. J. Nanoelectron. Mater. 2016 , 9 , 93 – 102 . 

  51. Vaynzof Y. The future of perovskite photovoltaics—thermal evaporation or solution processing? . Adv. Energy Mater. 2020 , 10 , 2003073 10.1002/aenm.202003073 . 

  52. Jin H.-C. ; Abelson J. R. ; Erhardt M. K. ; Nuzzo R. G. Soft lithographic fabrication of an image sensor array on a curved substrate . J. Vac. Sci. Technol., B 2004 , 22 , 2548 – 2551 . 10.1116/1.1795249 . 

  53. Park J. ; Fujita H. ; Kim B. Fabrication of metallic microstructure on curved substrate by optical soft lithography and copper electroplating . Sens. Actuators A: Phys. 2011 , 168 , 105 – 111 . 10.1016/j.sna.2011.03.024 . 

  54. de León A. G. ; Dirix Y. ; Staedler Y. ; Feldman K. ; Hähner G. ; Caseri W. R. ; Smith P. Method for fabricating pixelated, multicolor polarizing films . Appl. Opt. 2000 , 39 , 4847 – 4851 . 10.1364/AO.39.004847 . 18350078 

  55. Pugliese M. ; Prontera C. T. ; Polimeno L. ; Lerario G. ; Giannuzzi R. ; Esposito M. ; Carallo S. ; Costa D. ; De Marco L. ; De Giorgi M. ; Gigli G. ; Sanvitto S. ; Maiorano V. Highly Reflective Periodic Nanostructure Based on Thermal Evaporated Tungsten Oxide and Calcium Fluoride for Advanced Photonic Applications . ACS Appl. Nano Mater. 2020 , 3 , 10978 – 10985 . 10.1021/acsanm.0c02206 . 

  56. Drezner Y. ; Berger S. ; Hefetz M. A correlation between microstructure, composition and optical transparency of CVD-ZnS . Mater. Sci. Eng.: B 2001 , 87 , 59 – 65 . 10.1016/S0921-5107(01)00701-2 . 

  57. Pappas J. M. ; Dong X. Direct 3D Printing of Silica Doped Transparent Magnesium Aluminate Spinel Ceramics . Materials 2020 , 13 , 4810 10.3390/ma13214810 . 

  58. Morita K. ; Kim B.-N. ; Hiraga K. ; Yoshida H. Fabrication of transparent MgAl 2 O 4 spinel polycrystal by spark plasma sintering processing . Scr. Mater. 2008 , 58 , 1114 – 1117 . 10.1016/j.scriptamat.2008.02.008 . 

  59. Furuse H. ; Horiuchi N. ; Kim B.-N. Transparent non-cubic laser ceramics with fine microstructure . Sci. Rep. 2019 , 9 , 10300 – 10307 . 10.1038/s41598-019-46616-8 . 31311952 

  60. Roy S. ; Lingertat H. ; Brecher C. ; Sarin V. Optical properties of anisotropic polycrystalline Ce 3+ activated LSO . Opt. Mater. 2013 , 35 , 827 – 832 . 10.1016/j.optmat.2012.09.039 . 

  61. Kim B.-N. ; Hiraga K. ; Morita K. ; Yoshida H. ; Miyazaki T. ; Kagawa Y. Microstructure and optical properties of transparent alumina . Acta Mater. 2009 , 57 , 1319 – 1326 . 10.1016/j.actamat.2008.11.010 . 

  62. Zhang H. ; Yang J. ; Gray S. ; Brown J. A. ; Ketcham T. D. ; Baker D. E. ; Carapella A. ; Davis R. W. ; Arroyo J. G. ; Nolan D. A. Transparent Er 3+ -doped Y 2 O 3 ceramics with long optical coherence lifetime . ACS Omega 2017 , 2 , 3739 – 3744 . 10.1021/acsomega.7b00541 . 31457688 

  63. Lempicki A. ; Brecher C. ; Szupryczynski P. ; Lingertat H. ; Nagarkar V. V. ; Tipnis S. V. ; Miller S. R. A new lutetia-based ceramic scintillator for X-ray imaging . Nucl. Instrum. Methods Phys. Res., Sect. A 2002 , 488 , 579 – 590 . 10.1016/S0168-9002(02)00556-9 . 

  64. Sabet H. ; Bhandari H. B. ; Kudrolli H. ; Nagarkar V. V. Fabrication of X-ray/gamma-ray detector by growth of microcolumnar CsI: Tl onto silicon photomultipliers . Phys. Procedia 2012 , 37 , 1523 – 1530 . 10.1016/j.phpro.2012.04.104 . 

  65. van Breemen A. J. J. M. ; Simon M. ; Tousignant O. ; Shanmugam S. ; van der Steen J.-L. ; Akkerman H. B. ; Kronemeijer A. ; Ruetten W. ; Raaijmakers R. ; Alving L. ; Jacobs J. ; Malinowski P. E. ; de Roose F. ; Gelinck G. H. Curved digital X-ray detectors . npj Flex. Electron. 2020 , 4 , 22 – 28 . 10.1038/s41528-020-00084-7 . 

  66. Zhao J. ; Zhao L. ; Deng Y. ; Xiao X. ; Ni Z. ; Xu S. ; Huang J. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays . Nat. Photonics 2020 , 14 , 612 – 617 . 10.1038/s41566-020-0678-x . 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로