$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A Novel Feature-Engineered–NGBoost Machine-Learning Framework for Fraud Detection in Electric Power Consumption Data 원문보기

Sensors, v.21 no.24, 2021년, pp.8423 -   

Hussain, Saddam (School of Electrical Engineering, University Technology Malaysia, Johor Bahru 81310, Malaysia) ,  Mustafa, Mohd Wazir (wazir@utm.my) ,  Al-Shqeerat, Khalil Hamdi Ateyeh (School of Electrical Engineering, University Technology Malaysia, Johor Bahru 81310, Malaysia) ,  Saeed, Faisal (wazir@utm.my) ,  Al-rimy, Bander Ali Saleh (Department of Computer Science, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia)

Abstract AI-Helper 아이콘AI-Helper

This study presents a novel feature-engineered–natural gradient descent ensemble-boosting (NGBoost) machine-learning framework for detecting fraud in power consumption data. The proposed framework was sequentially executed in three stages: data pre-processing, feature engineering, and model e...

Keyword

참고문헌 (47)

  1. 1. Guerrero-Prado J.S. Alfonso-Morales W. Caicedo-Bravo E.F. A data analytics/big data framework for advanced metering infrastructure data Sensors 2021 21 5650 10.3390/s21165650 34451092 

  2. 2. Glauner P. Meira J.A. Valtchev P. State R. Bettinger F. The challenge of non-technical loss detection using artificial intelligence: A survey arXiv 2016 1606.00626 10.2991/ijcis.2017.10.1.51 

  3. 3. Northeast Group Electricity Theft and Non-Technical Losses: Global Markets, Solutions and Vendors 2017 Available online: http://www.northeast-group.com/reports/Brochure-Electricity%20Theft%20&%20Non-Technical%20Losses%20-%20Northeast%20Group.pdf (accessed on 18 October 2021) 

  4. 4. Fei K. Li Q. Zhu C. Non-technical losses detection using missing values’ pattern and neural architecture search Int. J. Electr. Power Energy Syst. 2022 134 107410 10.1016/j.ijepes.2021.107410 

  5. 5. Viegas J. Esteves P.R. Melicio R. Mendes V. Vieira S.M. Solutions for detection of non-technical losses in the electricity grid: A review Renew. Sustain. Energy Rev. 2017 80 1256 1268 10.1016/j.rser.2017.05.193 

  6. 6. Jaiswal S. Ballal M.S. Fuzzy inference based electricity theft prevention system to restrict direct tapping over distribution line J. Electr. Eng. Technol. 2020 15 1095 1106 10.1007/s42835-020-00408-7 

  7. 7. Liao C. Ten C.-W. Hu S. Strategic FRTU deployment considering cybersecurity in secondary distribution network IEEE Trans. Smart Grid 2013 4 1264 1274 10.1109/TSG.2013.2256939 

  8. 8. Hussain S. Mustafa M.W. Jumani T.A. Baloch S.K. Saeed M.S. A novel unsupervised feature-based approach for electricity theft detection using robust PCA and outlier removal clustering algorithm Int. Trans. Electr. Energy Syst. 2020 30 e12572 10.1002/2050-7038.12572 

  9. 9. Jeng R.-S. Kuo C.-Y. Ho Y.-H. Lee M.-F. Tseng L.-W. Fu C.-L. Liang P.-F. Chen L.-J. Missing data handling for meter data management system Proceedings of the Fourth International Conference on Future Energy Systems Berkeley, CA, USA 21–24 May 2013 275 276 

  10. 10. Roth P.L. Switzer F.S. A Monte Carlo analysis of missing data techniques in a HRM setting J. Manag. 1995 21 1003 1023 10.1177/014920639502100511 

  11. 11. Rahman M.G. Islam M.Z. Missing value imputation using a fuzzy clustering-based EM approach Knowl. Inf. Syst. 2016 46 389 422 10.1007/s10115-015-0822-y 

  12. 12. Jung S. Moon J. Park S. Rho S. Baik S.W. Hwang E. Bagging ensemble of multilayer perceptrons for missing electricity consumption data imputation Sensors 2020 20 1772 10.3390/s20061772 

  13. 13. Efron B. Missing data, imputation, and the bootstrap J. Am. Stat. Assoc. 1994 89 463 475 10.1080/01621459.1994.10476768 

  14. 14. Joenssen D.W. Bankhofer U. Hot deck methods for imputing missing data Machine Learning and Data Mining in Pattern Recognition Springer Berlin/Heidelberg, Germany 2012 63 75 

  15. 15. Allison P.D. Missing Data Sage Publications Thousand Oaks, CA, USA 2001 

  16. 16. Glauner P. Boechat A. Dolberg L. State R. Bettinger F. Rangoni Y. Duarte D. Large-scale detection of non-technical losses in imbalanced data sets Proceedings of the 2016 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference (ISGT) Minneapolis, MN, USA 6–9 September 2016 1 5 

  17. 17. Hasan N. Toma R.N. Nahid A.-A. Islam M.M.M. Kim J.-M. Electricity theft detection in smart grid systems: A CNN-LSTM based approach Energies 2019 12 3310 10.3390/en12173310 

  18. 18. Gunturi S.K. Sarkar D. Ensemble machine learning models for the detection of energy theft Electr. Power Syst. Res. 2021 192 106904 10.1016/j.epsr.2020.106904 

  19. 19. Buzau M.M. Tejedor-Aguilera J. Cruz-Romero P. Gomez-Exposito A. Detection of non-technical losses using smart meter data and supervised learning IEEE Trans. Smart Grid 2019 10 2661 2670 10.1109/TSG.2018.2807925 

  20. 20. Kotsiantis S. Kanellopoulos D. Pintelas P. Handling imbalanced datasets: A review GESTS Int. Trans. Comput. Sci. Eng. 2006 30 25 36 

  21. 21. Adil M. Javaid N. Qasim U. Ullah I. Shafiq M. Choi J.-G. LSTM and bat-based RUSBoost approach for electricity theft detection Appl. Sci. 2020 10 4378 10.3390/app10124378 

  22. 22. Jindal A. Dua A. Kaur K. Singh M. Kumar N. Mishra S. Decision tree and SVM-based data analytics for theft detection in smart grid IEEE Trans. Ind. Inform. 2016 12 1005 1016 10.1109/TII.2016.2543145 

  23. 23. Marimuthu K.P. Durairaj D. Srinivasan S.K. Development and implementation of advanced metering infrastructure for efficient energy utilization in smart grid environment Int. Trans. Electr. Energy Syst. 2018 28 e2504 10.1002/etep.2504 

  24. 24. Saeed M.S. Mustafa M.W. Sheikh U.U. Jumani T.A. Mirjat N.H. Ensemble bagged tree based classification for reducing non-technical losses in multan electric power company of Pakistan Electronics 2019 8 860 10.3390/electronics8080860 

  25. 25. Yan Z. Wen H. Electricity theft detection base on extreme gradient boosting in AMI IEEE Trans. Instrum. Meas. 2021 70 2504909 10.1109/TIM.2020.3048784 

  26. 26. Saeed M.S. Mustafa M.W. Sheikh U.U. Jumani T.A. Khan I. Atawneh S. Hamadneh N.N. An efficient boosted C5.0 decision-tree-based classification approach for detecting non-technical losses in power utilities Energies 2020 13 3242 10.3390/en13123242 

  27. 27. Pereira L.A.M. Afonso L.C.S. Papa J.P. Vale Z.A. Ramos C.C.O. Gastaldello D.S. Souza A.N. Multilayer perceptron neural networks training through charged system search and its application for non-technical losses detection Proceedings of the 2013 IEEE PES Conference on Innovative Smart Grid Technologies (ISGT Latin America) Sao Paulo, Brazil 15–17 April 2013 1 6 

  28. 28. Jokar P. Arianpoo N. Leung V.C.M. Electricity theft detection in AMI using customers’ consumption patterns IEEE Trans. Smart Grid 2015 7 216 226 10.1109/TSG.2015.2425222 

  29. 29. Tang F. Ishwaran H. Random forest missing data algorithms Stat. Anal. Data Min. ASA Data Sci. J. 2017 10 363 377 10.1002/sam.11348 

  30. 30. Barua S. Islam M. Yao X. Murase K. MWMOTE—Majority weighted minority oversampling technique for imbalanced data set learning IEEE Trans. Knowl. Data Eng. 2014 26 405 425 10.1109/TKDE.2012.232 

  31. 31. Nagi J. Yap K.S. Tiong S.K. Ahmed S.K. Mohamad M. Nontechnical loss detection for metered customers in power utility using support vector machines IEEE Trans. Power Deliv. 2010 25 1162 1171 10.1109/TPWRD.2009.2030890 

  32. 32. Punmiya R. Choe S. Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing IEEE Trans. Smart Grid 2019 10 2326 2329 10.1109/TSG.2019.2892595 

  33. 33. Barandas M. Folgado D. Fernandes L. Santos S. Abreu M. Bota P. Liu H. Schultz T. Gamboa H. TSFEL: Time series feature extraction library SoftwareX 2020 11 100456 10.1016/j.softx.2020.100456 

  34. 34. Razavi R. Gharipour A. Fleury M. Akpan I. A practical feature-engineering framework for electricity theft detection in smart grids Appl. Energy 2019 238 481 494 10.1016/j.apenergy.2019.01.076 

  35. 35. Mafarja M. Mirjalili S. Whale optimization approaches for wrapper feature selection Appl. Soft Comput. 2018 62 441 453 10.1016/j.asoc.2017.11.006 

  36. 36. Stekhoven D.J. Bühlmann P. MissForest—Non-parametric missing value imputation for mixed-type data Bioinformatics 2012 28 112 118 10.1093/bioinformatics/btr597 22039212 

  37. 37. Hussain S. Mustafa M.W. Jumani T.A. Baloch S.K. Alotaibi H. Khan I. Khan A. A novel feature engineered-CatBoost-based supervised machine learning framework for electricity theft detection Energy Rep. 2021 7 4425 4436 10.1016/j.egyr.2021.07.008 

  38. 38. Duan T. Avati A. Ding D.Y. Thai K.K. Basu S. Ng A.Y. Schuler A. NBGoost: Natural gradient boosting for probabilistic prediction arXiv 2020 1910.03225 

  39. 39. Seldon Technologies Tree SHAP 2019 Available online: https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html (accessed on 18 October 2021) 

  40. 40. Zheng Z. Yang Y. Niu X. Dai H.-N. Zhou Y. Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids IEEE Trans. Ind. Inform. 2017 14 1606 1615 10.1109/TII.2017.2785963 

  41. 41. Sharawi M. Zawbaa H.M. Emary E. Feature selection approach based on whale optimization algorithm Proceedings of the Ninth International Conference on Advanced Computational Intelligence (ICACI) Doha, Qatar 4–6 February2017 163 168 

  42. 42. Leghari Z.H. Hassan M.Y. Said D.M. Memon Z.A. Hussain S. An efficient framework for integrating distributed generation and capacitor units for simultaneous grid-connected and islanded network operations Int. J. Energy Res. 2021 45 14920 14958 10.1002/er.6768 

  43. 43. Leghari Z.H. Hassan M.Y. Said D.M. Jumani T.A. Memon Z.A. A novel grid-oriented dynamic weight parameter based improved variant of Jaya algorithm Adv. Eng. Softw. 2020 150 102904 10.1016/j.advengsoft.2020.102904 

  44. 44. Zhang Y. Li T. Na G. Li G. Li Y. Optimized extreme learning machine for power system transient stability prediction using synchrophasors Math. Probl. Eng. 2015 2015 529724 10.1155/2015/529724 

  45. 45. Messinis G. Hatziargyriou N.D. Review of non-technical loss detection methods Electr. Power Syst. Res. 2018 158 250 266 10.1016/j.epsr.2018.01.005 

  46. 46. Pereira J. Saraiva F. Convolutional neural network applied to detect electricity theft: A comparative study on unbalanced data handling techniques Int. J. Electr. Power Energy Syst. 2021 131 107085 10.1016/j.ijepes.2021.107085 

  47. 47. Asheghi R. Hosseini S.A. Saneie M. Shahri A.A. Updating the neural network sediment load models using different sensitivity analysis methods: A regional application J. Hydroinform. 2020 22 562 577 10.2166/hydro.2020.098 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로