최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Sensors, v.21 no.24, 2021년, pp.8423 -
Hussain, Saddam (School of Electrical Engineering, University Technology Malaysia, Johor Bahru 81310, Malaysia) , Mustafa, Mohd Wazir (wazir@utm.my) , Al-Shqeerat, Khalil Hamdi Ateyeh (School of Electrical Engineering, University Technology Malaysia, Johor Bahru 81310, Malaysia) , Saeed, Faisal (wazir@utm.my) , Al-rimy, Bander Ali Saleh (Department of Computer Science, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia)
This study presents a novel feature-engineered–natural gradient descent ensemble-boosting (NGBoost) machine-learning framework for detecting fraud in power consumption data. The proposed framework was sequentially executed in three stages: data pre-processing, feature engineering, and model e...
1. Guerrero-Prado J.S. Alfonso-Morales W. Caicedo-Bravo E.F. A data analytics/big data framework for advanced metering infrastructure data Sensors 2021 21 5650 10.3390/s21165650 34451092
2. Glauner P. Meira J.A. Valtchev P. State R. Bettinger F. The challenge of non-technical loss detection using artificial intelligence: A survey arXiv 2016 1606.00626 10.2991/ijcis.2017.10.1.51
3. Northeast Group Electricity Theft and Non-Technical Losses: Global Markets, Solutions and Vendors 2017 Available online: http://www.northeast-group.com/reports/Brochure-Electricity%20Theft%20&%20Non-Technical%20Losses%20-%20Northeast%20Group.pdf (accessed on 18 October 2021)
4. Fei K. Li Q. Zhu C. Non-technical losses detection using missing values’ pattern and neural architecture search Int. J. Electr. Power Energy Syst. 2022 134 107410 10.1016/j.ijepes.2021.107410
5. Viegas J. Esteves P.R. Melicio R. Mendes V. Vieira S.M. Solutions for detection of non-technical losses in the electricity grid: A review Renew. Sustain. Energy Rev. 2017 80 1256 1268 10.1016/j.rser.2017.05.193
6. Jaiswal S. Ballal M.S. Fuzzy inference based electricity theft prevention system to restrict direct tapping over distribution line J. Electr. Eng. Technol. 2020 15 1095 1106 10.1007/s42835-020-00408-7
7. Liao C. Ten C.-W. Hu S. Strategic FRTU deployment considering cybersecurity in secondary distribution network IEEE Trans. Smart Grid 2013 4 1264 1274 10.1109/TSG.2013.2256939
8. Hussain S. Mustafa M.W. Jumani T.A. Baloch S.K. Saeed M.S. A novel unsupervised feature-based approach for electricity theft detection using robust PCA and outlier removal clustering algorithm Int. Trans. Electr. Energy Syst. 2020 30 e12572 10.1002/2050-7038.12572
9. Jeng R.-S. Kuo C.-Y. Ho Y.-H. Lee M.-F. Tseng L.-W. Fu C.-L. Liang P.-F. Chen L.-J. Missing data handling for meter data management system Proceedings of the Fourth International Conference on Future Energy Systems Berkeley, CA, USA 21–24 May 2013 275 276
10. Roth P.L. Switzer F.S. A Monte Carlo analysis of missing data techniques in a HRM setting J. Manag. 1995 21 1003 1023 10.1177/014920639502100511
11. Rahman M.G. Islam M.Z. Missing value imputation using a fuzzy clustering-based EM approach Knowl. Inf. Syst. 2016 46 389 422 10.1007/s10115-015-0822-y
12. Jung S. Moon J. Park S. Rho S. Baik S.W. Hwang E. Bagging ensemble of multilayer perceptrons for missing electricity consumption data imputation Sensors 2020 20 1772 10.3390/s20061772
13. Efron B. Missing data, imputation, and the bootstrap J. Am. Stat. Assoc. 1994 89 463 475 10.1080/01621459.1994.10476768
14. Joenssen D.W. Bankhofer U. Hot deck methods for imputing missing data Machine Learning and Data Mining in Pattern Recognition Springer Berlin/Heidelberg, Germany 2012 63 75
15. Allison P.D. Missing Data Sage Publications Thousand Oaks, CA, USA 2001
16. Glauner P. Boechat A. Dolberg L. State R. Bettinger F. Rangoni Y. Duarte D. Large-scale detection of non-technical losses in imbalanced data sets Proceedings of the 2016 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference (ISGT) Minneapolis, MN, USA 6–9 September 2016 1 5
17. Hasan N. Toma R.N. Nahid A.-A. Islam M.M.M. Kim J.-M. Electricity theft detection in smart grid systems: A CNN-LSTM based approach Energies 2019 12 3310 10.3390/en12173310
18. Gunturi S.K. Sarkar D. Ensemble machine learning models for the detection of energy theft Electr. Power Syst. Res. 2021 192 106904 10.1016/j.epsr.2020.106904
19. Buzau M.M. Tejedor-Aguilera J. Cruz-Romero P. Gomez-Exposito A. Detection of non-technical losses using smart meter data and supervised learning IEEE Trans. Smart Grid 2019 10 2661 2670 10.1109/TSG.2018.2807925
20. Kotsiantis S. Kanellopoulos D. Pintelas P. Handling imbalanced datasets: A review GESTS Int. Trans. Comput. Sci. Eng. 2006 30 25 36
21. Adil M. Javaid N. Qasim U. Ullah I. Shafiq M. Choi J.-G. LSTM and bat-based RUSBoost approach for electricity theft detection Appl. Sci. 2020 10 4378 10.3390/app10124378
22. Jindal A. Dua A. Kaur K. Singh M. Kumar N. Mishra S. Decision tree and SVM-based data analytics for theft detection in smart grid IEEE Trans. Ind. Inform. 2016 12 1005 1016 10.1109/TII.2016.2543145
23. Marimuthu K.P. Durairaj D. Srinivasan S.K. Development and implementation of advanced metering infrastructure for efficient energy utilization in smart grid environment Int. Trans. Electr. Energy Syst. 2018 28 e2504 10.1002/etep.2504
24. Saeed M.S. Mustafa M.W. Sheikh U.U. Jumani T.A. Mirjat N.H. Ensemble bagged tree based classification for reducing non-technical losses in multan electric power company of Pakistan Electronics 2019 8 860 10.3390/electronics8080860
25. Yan Z. Wen H. Electricity theft detection base on extreme gradient boosting in AMI IEEE Trans. Instrum. Meas. 2021 70 2504909 10.1109/TIM.2020.3048784
26. Saeed M.S. Mustafa M.W. Sheikh U.U. Jumani T.A. Khan I. Atawneh S. Hamadneh N.N. An efficient boosted C5.0 decision-tree-based classification approach for detecting non-technical losses in power utilities Energies 2020 13 3242 10.3390/en13123242
27. Pereira L.A.M. Afonso L.C.S. Papa J.P. Vale Z.A. Ramos C.C.O. Gastaldello D.S. Souza A.N. Multilayer perceptron neural networks training through charged system search and its application for non-technical losses detection Proceedings of the 2013 IEEE PES Conference on Innovative Smart Grid Technologies (ISGT Latin America) Sao Paulo, Brazil 15–17 April 2013 1 6
28. Jokar P. Arianpoo N. Leung V.C.M. Electricity theft detection in AMI using customers’ consumption patterns IEEE Trans. Smart Grid 2015 7 216 226 10.1109/TSG.2015.2425222
29. Tang F. Ishwaran H. Random forest missing data algorithms Stat. Anal. Data Min. ASA Data Sci. J. 2017 10 363 377 10.1002/sam.11348
30. Barua S. Islam M. Yao X. Murase K. MWMOTE—Majority weighted minority oversampling technique for imbalanced data set learning IEEE Trans. Knowl. Data Eng. 2014 26 405 425 10.1109/TKDE.2012.232
31. Nagi J. Yap K.S. Tiong S.K. Ahmed S.K. Mohamad M. Nontechnical loss detection for metered customers in power utility using support vector machines IEEE Trans. Power Deliv. 2010 25 1162 1171 10.1109/TPWRD.2009.2030890
32. Punmiya R. Choe S. Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing IEEE Trans. Smart Grid 2019 10 2326 2329 10.1109/TSG.2019.2892595
33. Barandas M. Folgado D. Fernandes L. Santos S. Abreu M. Bota P. Liu H. Schultz T. Gamboa H. TSFEL: Time series feature extraction library SoftwareX 2020 11 100456 10.1016/j.softx.2020.100456
34. Razavi R. Gharipour A. Fleury M. Akpan I. A practical feature-engineering framework for electricity theft detection in smart grids Appl. Energy 2019 238 481 494 10.1016/j.apenergy.2019.01.076
35. Mafarja M. Mirjalili S. Whale optimization approaches for wrapper feature selection Appl. Soft Comput. 2018 62 441 453 10.1016/j.asoc.2017.11.006
36. Stekhoven D.J. Bühlmann P. MissForest—Non-parametric missing value imputation for mixed-type data Bioinformatics 2012 28 112 118 10.1093/bioinformatics/btr597 22039212
37. Hussain S. Mustafa M.W. Jumani T.A. Baloch S.K. Alotaibi H. Khan I. Khan A. A novel feature engineered-CatBoost-based supervised machine learning framework for electricity theft detection Energy Rep. 2021 7 4425 4436 10.1016/j.egyr.2021.07.008
38. Duan T. Avati A. Ding D.Y. Thai K.K. Basu S. Ng A.Y. Schuler A. NBGoost: Natural gradient boosting for probabilistic prediction arXiv 2020 1910.03225
39. Seldon Technologies Tree SHAP 2019 Available online: https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html (accessed on 18 October 2021)
40. Zheng Z. Yang Y. Niu X. Dai H.-N. Zhou Y. Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids IEEE Trans. Ind. Inform. 2017 14 1606 1615 10.1109/TII.2017.2785963
41. Sharawi M. Zawbaa H.M. Emary E. Feature selection approach based on whale optimization algorithm Proceedings of the Ninth International Conference on Advanced Computational Intelligence (ICACI) Doha, Qatar 4–6 February2017 163 168
42. Leghari Z.H. Hassan M.Y. Said D.M. Memon Z.A. Hussain S. An efficient framework for integrating distributed generation and capacitor units for simultaneous grid-connected and islanded network operations Int. J. Energy Res. 2021 45 14920 14958 10.1002/er.6768
43. Leghari Z.H. Hassan M.Y. Said D.M. Jumani T.A. Memon Z.A. A novel grid-oriented dynamic weight parameter based improved variant of Jaya algorithm Adv. Eng. Softw. 2020 150 102904 10.1016/j.advengsoft.2020.102904
44. Zhang Y. Li T. Na G. Li G. Li Y. Optimized extreme learning machine for power system transient stability prediction using synchrophasors Math. Probl. Eng. 2015 2015 529724 10.1155/2015/529724
45. Messinis G. Hatziargyriou N.D. Review of non-technical loss detection methods Electr. Power Syst. Res. 2018 158 250 266 10.1016/j.epsr.2018.01.005
46. Pereira J. Saraiva F. Convolutional neural network applied to detect electricity theft: A comparative study on unbalanced data handling techniques Int. J. Electr. Power Energy Syst. 2021 131 107085 10.1016/j.ijepes.2021.107085
47. Asheghi R. Hosseini S.A. Saneie M. Shahri A.A. Updating the neural network sediment load models using different sensitivity analysis methods: A regional application J. Hydroinform. 2020 22 562 577 10.2166/hydro.2020.098
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.