$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Recent Advances in Homogeneous/Heterogeneous Catalytic Hydrogenation and Dehydrogenation for Potential Liquid Organic Hydrogen Carrier (LOHC) Systems 원문보기

Catalysts, v.11 no.12, 2021년, pp.1497 -   

Cho, Jun-Young (College of Pharmacy, Kyung Hee University, Seoul 02447, Korea) ,  Kim, Hahyeon (Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Korea) ,  Oh, Jeong-Eun (Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Korea) ,  Park, Boyoung Y. (College of Pharmacy, Kyung Hee University, Seoul 02447, Korea)

Abstract AI-Helper 아이콘AI-Helper

Here, we review liquid organic hydrogen carriers (LOHCs) as a potential solution to the global warming problem due to the increased use of fossil fuels. Recently, hydrogen molecules have attracted attention as a sustainable energy carrier from renewable energy-rich regions to energy-deficient region...

참고문헌 (110)

  1. 10.1002/9783527633593 Balzani, V., and Armaroli, N. (2011). Energy for a Sustainable World: From the Oil Age to a Sun-Powered Future, Wiley-VCH. 

  2. Bockris The hydrogen economy: Its history Int. J. Hydrog. Energy 2013 10.1016/j.ijhydene.2012.12.026 38 2579 

  3. Singh Hydrogen: A sustainable fuel for future of the transport sector Renew. Sust. Energ. Rev. 2015 10.1016/j.rser.2015.06.040 51 623 

  4. 10.1002/9783527674268.ch33 Teichmann, D., Arlt, W., Schlücker, E., and Wasserscheid, P. (2016). Transport and Storage of Hydrogen via Liquid Organic Hydrogen Carrier (LOHC) Systems, Wiley-VCH. 

  5. Satyapal The U.S. Department of Energy’s National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements Catal. Today 2007 10.1016/j.cattod.2006.09.022 120 246 

  6. He Hydrogen carriers Nat. Rev. Mater. 2016 10.1038/natrevmats.2016.59 1 16059 

  7. Gianotti High-Purity Hydrogen Generation via Dehydrogenation of Organic Carriers: A Review on the Catalytic Process ACS Catal. 2018 10.1021/acscatal.7b04278 8 4660 

  8. Dalebrook Hydrogen storage: Beyond conventional methods Chem. Commun. 2013 10.1039/c3cc43836h 49 8735 

  9. Sordakis Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols Chem. Rev. 2018 10.1021/acs.chemrev.7b00182 118 372 

  10. Clot Computational structure-Activity relationships in H2 storage: How placement of N atoms affects release temperatures in organic liquid storage materials Chem. Commun. 2007 10.1039/B705037B 22 2231 

  11. Cooper An integrated hydrogen storage and delivery approach using organic liquid-phase carriers Energy Conf. 2006 16 1 

  12. Dobereiner Dehydrogenation as a Substrate-Activating Strategy in Homogeneous Transition-Metal Catalysis Chem. Rev. 2010 10.1021/cr900202j 110 681 

  13. Crabtree Nitrogen-Containing Liquid Organic Hydrogen Carriers: Progress and Prospects ACS Sustain. Chem. Eng. 2017 10.1021/acssuschemeng.7b00983 5 4491 

  14. Crabtree Hydrogen storage in liquid organic heterocycles Energy Environ. Sci. 2008 10.1039/b805644g 1 134 

  15. He Liquid Organic Hydrogen Carriers J. Energy Chem. 2015 10.1016/j.jechem.2015.08.007 24 587 

  16. Preuster Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy Acc. Chem. Res. 2017 10.1021/acs.accounts.6b00474 50 74 

  17. Niermann Liquid Organic Hydrogen Carrier (LOHC)-Assessment based on chemical and economic properties Int. J. Hydrog. 2019 10.1016/j.ijhydene.2019.01.199 44 6631 

  18. Zhong Formic Acid-Based Liquid Organic Hydrogen Carrier System with Heterogeneous Catalysts Adv. Sustain. Syst. 2018 10.1002/adsu.201700161 2 1700161 

  19. Cook Liquid organic hydrogen carriers for transportation and storing of renewable energy-Review and discussion J. Power Sources 2018 10.1016/j.jpowsour.2018.04.011 396 803 

  20. Niermann Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen Renew. Sust. Energ. Rev. 2021 10.1016/j.rser.2020.110171 135 110171 

  21. Uhrig Reliability of liquid organic hydrogen carrier-based energy storage in a mobility application Energy Sci. Eng. 2020 10.1002/ese3.646 8 2044 

  22. Mondisha The Prospect of Hydrogen Storage Using Liquid Organic Hydrogen Carriers Energy Fuels 2019 10.1021/acs.energyfuels.9b00296 33 2778 

  23. Preuster Resilience of Liquid Organic Hydrogen Carrier Based Energy-Storage Systems Energy Technol. 2018 10.1002/ente.201700446 6 529 

  24. Turunen, H. (2011). CO2-Balance in the Atmosphere and CO2-Utilisation: An. Engineering Approach, Acta University Oulu. 

  25. Markiewicz Environmental and health impact assessment of Liquid Organic Hydrogen Carrier (LOHC) systems-Challenges and preliminary results Energy Environ. Sci. 2015 10.1039/C4EE03528C 8 1035 

  26. Drury Formic acid Kirk-Othmer Encyclopedia of Chemical Technology 2013 Volume 11 951 

  27. Langer Low-Pressure Hydrogenation of Carbon Dioxide Catalyzed by an Iron Pincer Complex Exhibiting Noble Metal Activity Angew. Chem. Int. Ed. 2011 10.1002/anie.201104542 50 9948 

  28. Filonenko Highly Efficient Reversible Hydrogenation of Carbon Dioxide to Formates Using a Ruthenium PNP-Pincer Catalyst ChemCatChem 2014 10.1002/cctc.201402119 6 1526 

  29. Kothandaraman Amine-Free Reversible Hydrogen Storage in Formate Salts Catalyzed by Ruthenium Pincer Complex without pH Control or Solvent Change ChemSusChem 2015 10.1002/cssc.201403458 8 1442 

  30. Bi Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon Angew. Chem. Int. Ed. 2016 10.1002/anie.201605961 55 11849 

  31. Laurenczy Additive free, room temperature direct homogeneous catalytic carbon dioxide hydrogenation in aqueous solution using an iron(II) phosphine catalyst J. Catal. 2018 362 76 

  32. Patra Dehydrogenation of Formic Acid Catalyzed by Water-Soluble Ruthenium Complexes: X-ray Crystal Structure of a Diruthenium Complex Eur. J. Inorg. Chem. 2019 10.1002/ejic.201801501 2019 1046 

  33. Zhou Cobalt-Catalyzed Aqueous Dehydrogenation of Formic Acid Chem. Eur. J. 2019 10.1002/chem.201805612 25 8459 

  34. Anderson Manganese-Mediated Formic Acid Dehydrogenation Chem. Eur. J. 2019 10.1002/chem.201901177 25 10557 

  35. Agapova Hydrogen production from formic acid catalyzed by a phosphine free manganese complex: Investigation and mechanistic insights Green Chem. 2020 10.1039/C9GC02453K 22 913 

  36. Wang Synergistic Effect of Pendant N Moieties for Proton Shuttling in the Dehydrogenation of Formic Acid Catalyzed by Biomimetic IrIII Complexes ChemSusChem 2020 10.1002/cssc.202001190 13 5015 

  37. Li Cobalt Single-Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid Angew. Chem. Int. Ed. 2020 10.1002/anie.202004125 59 15849 

  38. Trincado CO2-based hydrogen storage-Hydrogen generation from formaldehyde/water Phys. Sci. Rev. 2018 3 20170013 

  39. Fujita Hydrogen Production from a Methanol-Water Solution Catalyzed by an Anionic Iridium Complex Bearing a Functional Bipyridonate Ligand under Weakly Basic Conditions Angew. Chem. Int. Ed. 2015 10.1002/anie.201502194 54 9057 

  40. Heim Selective and mild hydrogen production using water and formaldehyde Nat. Commun. 2014 10.1038/ncomms4621 5 3621 

  41. Suenobu Catalytic hydrogen production from paraformaldehyde and water using an organoiridium complex Chem. Commun. 2015 10.1039/C4CC06581F 51 1670 

  42. Trincado Homogeneously catalysed conversion of aqueous formaldehyde to H2 and carbonate Nat. Commun. 2017 10.1038/ncomms14990 8 14990 

  43. Wang Highly Efficient and Selective Methanol Production from Paraformaldehyde and Water at Room Temperature ACS Catal. 2018 10.1021/acscatal.8b00321 8 5233 

  44. Heim Water decontamination with hydrogen production using microwave-formed minute-made ruthenium catalysts Green Chem. 2016 10.1039/C5GC01798J 18 1469 

  45. Awasthi Ruthenium catalyzed hydrogen production from formaldehyde-Water solution Sustain. Energy Fuels 2021 10.1039/D0SE01330G 5 549 

  46. Li Core-shell structured iron nanoparticles for the generation of COx-free hydrogen via ammonia decomposition Catal. Commun. 2010 10.1016/j.catcom.2009.11.003 11 368 

  47. Okura Promotion effect of rare-earth elements on the catalytic decomposition of ammonia over Ni/Al2O3 catalyst APPL 2015 505 77 

  48. Yin Investigation on the catalysis of COx-free hydrogen generation from ammonia J. Catal. 2004 10.1016/j.jcat.2004.03.008 224 384 

  49. Yin A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications APPL 2004 277 1 

  50. Pelka Catalytic Ammonia Decomposition Over Fe/Fe4N Catal. Lett. 2009 10.1007/s10562-008-9758-0 128 72 

  51. Yao Core-shell structured nickel and ruthenium nanoparticles: Very active and stable catalysts for the generation of COx-free hydrogen via ammonia decomposition Catal. Today 2011 10.1016/j.cattod.2010.10.056 164 112 

  52. Zheng Experimental and Theoretical Investigation of Molybdenum Carbide and Nitride as Catalysts for Ammonia Decomposition J. Am. Chem. Soc. 2013 10.1021/ja309734u 135 3458 

  53. Tuuzani Dehydrogenation reactor for a vehicle equipped with a hydrogen engine: A simulation study Int. J. Hydrog. Energy 1984 10.1016/0360-3199(84)90158-7 9 929 

  54. Cacciola Cyclohexane as a liquid phase carrier in hydrogen storage and transport Int. J. Hydrog. Energy 1984 10.1016/0360-3199(84)90062-4 9 411 

  55. Taube A system of hydrogen-powered vehicles with liquid organic hydrides Int. J. Hydrog. Energy 1983 10.1016/0360-3199(83)90067-8 8 213 

  56. Taube A prototype truck powered by hydrogen from organic liquid hydrides Int. J. Hydrog. Energy 1985 10.1016/0360-3199(85)90035-7 10 595 

  57. Jorschick Charging a Liquid Organic Hydrogen Carrier System with H2/CO2 Gas Mixtures ChemCatChem 2018 10.1002/cctc.201800960 10 4329 

  58. Bruckner Evaluation of Industrially Applied Heat-Transfer Fluids as Liquid Organic Hydrogen Carrier Systems ChemSusChem 2014 10.1002/cssc.201300426 7 229 

  59. Kalenchuk Effect of Isomerization on the Reversible Reaction of Hydrogenation-Dehydrogenation of ortho-Terphenyl on a Pt/C Catalyst Chem. Eng. Technol. 2018 10.1002/ceat.201800312 41 1842 

  60. Jang A High-Capacity, Reversible Liquid Organic Hydrogen Carrier: H2-Release Properties and an Application to a Fuel Cell ACS Sustain. Chem. Eng. 2019 10.1021/acssuschemeng.8b04835 7 1185 

  61. Dean The effect of temperature, catalyst and sterics on the rate of N-heterocycledehydrogenation for hydrogenstorage New J. Chem. 2011 10.1039/C0NJ00511H 35 417 

  62. Wechsler The dehydrogenation of combined organic and inorganic hydrogen-storage carriers Can. J. Chem. 2010 10.1139/V10-026 88 548 

  63. Smith Review of Methods for the Catalytic Hydrogenation of Carboxamides Chem. Rev. 2014 10.1021/cr400609m 114 5477 

  64. Pritchard Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: History, advances and future directions Chem. Soc. Rev. 2015 10.1039/C5CS00038F 44 3808 

  65. Yamaguchi Homogeneous Catalytic System for Reversible Dehydrogenation−Hydrogenation Reactions of Nitrogen Heterocycles with Reversible Interconversion of Catalytic Species J. Am. Chem. Soc. 2009 10.1021/ja9022623 131 8410 

  66. Forberg Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia Nat. Commun. 2016 10.1038/ncomms13201 7 13201 

  67. Fujita Reversible Interconversion between 2,5-Dimethylpyrazine and 2,5-Dimethylpiperazine by Iridium-Catalyzed Hydrogenation/Dehydrogenation for Efficient Hydrogen Storage Angew. Chem. Int. Ed. 2017 10.1002/anie.201705452 56 10886 

  68. Vivancos NHC-Based Iridium Catalysts for Hydrogenation and Dehydrogenation of N-Heteroarenes in Water under Mild Conditions ACS Catal. 2018 10.1021/acscatal.7b03547 8 9945 

  69. Scheuermeyer Homogeneously-catalysed hydrogen release/storage using the 2-methylindole/2-methylindoline LOHC system in molten salt-organic biphasic reaction systems Chem. Commun. 2019 10.1039/C8CC09883B 55 2046 

  70. Liu Efficient acceptorless dehydrogenation of hydrogen-rich N-heterocycles photocatalyzed by Ni(OH)2@CdSe/CdS quantum dots Catal. Sci. Technol. 2021 10.1039/D1CY00366F 11 3810 

  71. Xie Pd Catalyzed, Acid Accelerated, Rechargeable, Liquid Organic Hydrogen Carrier System Based on Methylpyridines/Methylpiperidines ACS Appl. Energy Mater. 2019 10.1021/acsaem.9b00523 2 4302 

  72. Zubar Hydrogenation or Dehydrogenation of N-Containing Heterocycles Catalyzed by a Single Manganese Complex Org. Lett. 2020 10.1021/acs.orglett.0c01273 22 3974 

  73. Hu A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation Nat. Commun. 2015 10.1038/ncomms7859 6 6859 

  74. Kothandaraman Efficient Reversible Hydrogen Carrier System Based on Amine Reforming of Methanol J. Am. Chem. Soc. 2017 10.1021/jacs.6b11637 139 2549 

  75. Shao Reversible interconversion between methanoldiamineand diamide for hydrogen storage based on manganese catalyzed (de)hydrogenation Nat. Commun. 2020 10.1038/s41467-020-14380-3 11 591 

  76. Zou Synthesis of oxalamides by acceptorless dehydrogenative coupling of ethylene glycol and amines and the reverse hydrogenation catalyzed by ruthenium Chem. Sci. 2020 10.1039/D0SC02065F 11 7188 

  77. Kumar Selective Hydrogenation of Cyclic Imides to Diols and Amines and Its Application in the Development of a Liquid Organic Hydrogen Carrier J. Am. Chem. Soc. 2018 10.1021/jacs.8b04581 140 7453 

  78. Das Manganese catalyzed selective hydrogenation of cyclic imides to diols and amines Green Chem. 2020 10.1039/D0GC00570C 22 3079 

  79. Xie A Reversible Liquid Organic Hydrogen Carrier System Based on Methanol-Ethylenediamine and Ethylene Urea Angew. Chem. Int. Ed. 2019 10.1002/anie.201901695 58 5105 

  80. Das Manganese Catalyzed Hydrogenation of Carbamates and Urea Derivatives J. Am. Chem. Soc. 2019 10.1021/jacs.9b05591 141 12962 

  81. Reguillo Ruthenium-Catalyzed Hydrogenation of Nitriles: Insights into the Mechanism J. Am. Chem. Soc. 2010 10.1021/ja102759z 132 7854 

  82. Tseng Oxidant-Free Conversion of Primary Amines to Nitriles J. Am. Chem. Soc. 2013 10.1021/ja409223a 135 16352 

  83. Mata Catalytic Hydrogen Production by Ruthenium Complexes from the Conversion of Primary Amines to Nitriles: Potential Application as a Liquid Organic Hydrogen Carrier Chem. Eur. J. 2016 10.1002/chem.201603423 22 17758 

  84. Luo A Single-Component Liquid-Phase Hydrogen Storage Material J. Am. Chem. Soc. 2011 10.1021/ja208834v 133 19326 

  85. Methanol-to-hydrocarbons: Catalytic materials and their behavior Microporous Mesoporous Mater. 1999 10.1016/S1387-1811(98)00319-9 29 3 

  86. Haw The mechanism of methanol to hydrocarbon catalysis Acc. Chem. Res. 2003 10.1021/ar020006o 36 317 

  87. Olsbye Mechanistic insight into the methanol-to-hydrocarbons reaction Catal. Today 2005 10.1016/j.cattod.2005.07.135 106 108 

  88. Palo Methanol Steam Reforming for Hydrogen Production Chem. Rev. 2007 10.1021/cr050198b 107 3992 

  89. 10.1002/9783527627806 Olah, G.A., Goeppert, A., and Prakash, G.K.S. (2009). Beyond Oil and Gas: The Methanol Economy, Wiley-VCH. 

  90. Olah Towards Oil Independence Through Renewable Methanol Chemistry Angew. Chem. Int. Ed. 2013 10.1002/anie.201204995 52 104 

  91. Shen Hydrogen generation from methanol at near-room temperature Chem. Sci. 2017 10.1039/C7SC01778B 8 7498 

  92. Baya Catalytic Dehydrogenative Coupling of Hydrosilanes with Alcohols for the Production of Hydrogen On-demand: Application of a Silane/Alcohol Pair as a Liquid Organic Hydrogen Carrier Chem. Eur. J. 2017 10.1002/chem.201700243 23 10815 

  93. Sabater High Production of Hydrogen on Demand from Silanes Catalyzed by Iridium Complexes as a Versatile Hydrogen Storage System ACS Catal. 2018 10.1021/acscatal.7b04479 8 2558 

  94. Garg Efficient Transfer Hydrogenation of Ketones using Methanol as Liquid Organic Hydrogen Carrier ChemCatChem 2020 10.1002/cctc.202000228 12 3472 

  95. Zou Ethylene Glycol as an Efficient and Reversible Liquid Organic Hydrogen Carrier Nat. Catal. 2019 10.1038/s41929-019-0265-z 2 415 

  96. Zhou A Reversible Liquid-to-Liquid Organic Hydrogen Carrier System Based on Ethylene Glycol and Ethanol Chem. Eur. J. 2020 10.1002/chem.202002749 26 15487 

  97. Fellay Selective formic acid decomposition for high-pressure hydrogen generation: A mechanistic study Chem. Eur. J. 2009 10.1002/chem.200801824 15 3752 

  98. Orava Multi-phase modeling of non-isothermal reactive flow in fluidized bed reactors J. Comput. Appl. Math. 2015 10.1016/j.cam.2015.01.012 289 282 

  99. Mellmann Formic acid as a hydrogen storage material-Development of homogeneous catalysts for selective hydrogen release Chem. Soc. Rev. 2016 10.1039/C5CS00618J 45 3954 

  100. Wissink Fuelling the hydrogen economy: Scale-up of an integrated formic acid-to-power system Int. J. Hydrog. Energy 2019 10.1016/j.ijhydene.2019.01.153 44 28533 

  101. Peters A solid oxide fuel cell operating on liquid organic hydrogen carrier-based hydrogen-A kinetic model of the hydrogen release unit and system performance Int. J. Hydrog. Energy 2019 10.1016/j.ijhydene.2019.03.220 44 13794 

  102. Yuranov Heterogeneous Catalytic Reactor for Hydrogen Production from Formic Acid and Its Use in Polymer Electrolyte Fuel Cells ACS Sustain. Chem. Eng. 2018 10.1021/acssuschemeng.8b00423 6 6635 

  103. Hwang Heterogeneous catalytic reactor design with optimum temperature profile I: Application of catalyst dilution and side-stream distribution Chem. Eng. Sci. 2004 10.1016/j.ces.2004.05.037 59 4229 

  104. Javaid Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors Beilstein. J. Org. Chem. 2013 10.3762/bjoc.9.129 9 1156 

  105. Javaid Efficient and Continuous Decomposition of Hydrogen Peroxide Using a Silica Capillary Coated with a Thin Palladium or Platinum Layer Bull. Chem. Soc. Jpn. 2015 10.1246/bcsj.20150052 88 976 

  106. Park CO2 hydrogenation to formic acid over heterogenized ruthenium catalysts using a fixed bed reactor with separation units Green Chem. 2020 10.1039/C9GC03685G 22 1639 

  107. Meng Methylcyclohexane Dehydrogenation for Hydrogen Production via a Bimodal Catalytic Membrane Reactor AIChE J. 2015 10.1002/aic.14764 61 1628 

  108. 10.3390/membranes8040112 Wunsch, A., Mohr, M., and Pfeifer, P. (2018). Intensified LOHC-Dehydrogenation Using Multi-Stage Microstructures and Pd-Based Membranes. Membranes, 8. 

  109. Jorschick Hydrogen storage using a hot pressure swing reactor Energy Environ. Sci. 2017 10.1039/C7EE00476A 10 1652 

  110. Mrusek Highly efficient, low-temperature hydrogen release from perhydro-benzyltoluene using reactive distillation Energy Environ. Sci. 2020 10.1039/D0EE01155J 13 3119 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로