$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Serum-free cultures of C2C12 cells show different muscle phenotypes which can be estimated by metabolic profiling 원문보기

Scientific reports, v.12, 2022년, pp.827 -   

Jang, Mi (Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Hogskoleringen 1, 7491 Trondheim, Norway) ,  Scheffold, Jana (Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Hogskoleringen 1, 7491 Trondheim, Norway) ,  Røst, Lisa Marie (Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Hogskoleringen 1, 7491 Trondheim, Norway) ,  Cheon, Hyejeong (PoreLab, Department of Physics, Norwegian University of Science and Technology, Hogskoleringen 1, 7491 Trondheim, Norway) ,  Bruheim, Per (Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Hogskoleringen 1, 7491 Trondheim, Norway)

Abstract AI-Helper 아이콘AI-Helper

In vitro skeletal muscle cell production is emerging in the field of artificial lab-grown meat as alternative future food. Currently, there is an urgent paradigm shift towards a serum replacement culture system. Surprisingly, little is known about the impact of serum-free culture on skeletal muscle ...

참고문헌 (59)

  1. 1. Price PJ Best practices for media selection for mammalian cells In Vitro Cell. Dev. Biol. Anim. 2017 53 673 681 28726187 

  2. 2. Brindley DA Peak serum: Implications of serum supply for cell therapy manufacturing Regen. Med. 2012 7 7 13 22168489 

  3. 3. Ben-Arye T Levenberg S Tissue engineering for clean meat production Front. Sustain. Food Syst. 2019 3 66 

  4. 4. van der Valk J Optimization of chemically defined cell culture media—Replacing fetal bovine serum in mammalian in vitro methods Toxicol. In Vitro 2010 24 1053 1063 20362047 

  5. 5. Liu CH Liu YX Wu WC Facile development of medium optimization for antibody production: Implementation in spinner flask and hollow fiber reactor Cytotechnology 2018 70 1631 1642 30284074 

  6. 6. McGillicuddy N Floris P Albrecht S Bones J Examining the sources of variability in cell culture media used for biopharmaceutical production Biotechnol. Lett. 2018 40 5 21 28940015 

  7. 7. Karnieli O A consensus introduction to serum replacements and serum-free media for cellular therapies Cytotherapy 2017 19 155 169 28017599 

  8. 8. Orellana N A new edible film to produce in vitro meat Foods 2020 9 185 

  9. 9. MacQueen LA Muscle tissue engineering in fibrous gelatin: implications for meat analogs npj Sci. Food 2019 3 1 12 31304273 

  10. 10. Zhang G Challenges and possibilities for bio-manufacturing cultured meat Trends Food Sci. Technol. 2020 97 66 

  11. 11. Kolkmann AM Post MJ Rutjens MAM van Essen ALM Moutsatsou P Serum-free media for the growth of primary bovine myoblasts Cytotechnology 2020 72 111 120 31884572 

  12. 12. Will K Kuzinski J Palin M-F Hildebrandt J-P Rehfeldt C A second look at leptin and adiponectin actions on the growth of primary porcine myoblasts under serum-free conditions Arch. Anim. Breed. 2014 57 1 10 

  13. 13. Cai A Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds BMC Biotechnol. 2018 18 1 12 29316906 

  14. 14. Bodiou V Moutsatsou P Post MJ Microcarriers for upscaling cultured meat production Front. Nutr. 2020 7 10 32154261 

  15. 15. Lawson MA Purslow PP Differentiation of myoblasts in serum-free media: Effects of modified media are cell line-specific Cells Tissues Organs 2000 167 130 137 10971037 

  16. 16. Molnar P Wang W Natarajan A Rumsey JW Hickman JJ Photolithographic patterning of C2C12 myotubes using vitronectin as growth substrate in serum-free medium Biotechnol. Prog. 2007 23 265 268 17269697 

  17. 17. Fujita H Endo A Shimizu K Nagamori E Evaluation of serum-free differentiation conditions for C2C12 myoblast cells assessed as to active tension generation capability Biotechnol. Bioeng. 2010 107 894 901 20635352 

  18. 18. Guo G Serum-based culture conditions provoke gene expression variability in mouse embryonic stem cells as revealed by single-cell analysis Cell Rep. 2016 14 956 965 26804902 

  19. 19. Luhur A Adapting drosophila melanogaster cell lines to serum-free culture conditions G3 Genes Genomes Genet. 2020 10 4541 4551 

  20. 20. Guijas C Montenegro-Burke JR Warth B Spilker ME Siuzdak G Metabolomics activity screening for identifying metabolites that modulate phenotype Nat. Biotechnol. 2018 36 316 320 29621222 

  21. 21. Muroya S Ueda S Komatsu T Miyakawa T Ertbjerg P Meatabolomics: Muscle and meat metabolomics in domestic animals Metabolites 2020 10 66 

  22. 22. Røst LM Absolute quantification of the central carbon metabolome in eight commonly applied prokaryotic and eukaryotic model systems Metabolites 2020 10 56 

  23. 23. Kumar K Venkatraman V Bruheim P Adaptation of central metabolite pools to variations in growth rate and cultivation conditions in Saccharomyces cerevisiae Microb. Cell Factories 2021 20 1 16 

  24. 24. Huang B Mdfi promotes C2C12 cell differentiation and positively modulates fast-to-slow-twitch muscle fiber transformation Front. Cell Dev. Biol. 2021 9 605875 33553177 

  25. 25. Daskalaki E Pillon NJ Krook A Wheelock CE Checa A The influence of culture media upon observed cell secretome metabolite profiles: The balance between cell viability and data interpretability Anal. Chim. Acta 2018 1037 338 350 30292310 

  26. 26. Hwang SY Folic acid promotes the myogenic differentiation of C2C12 murine myoblasts through the Akt signaling pathway Int. J. Mol. Med. 2015 36 1073 1080 26310574 

  27. 27. Listrat A How muscle structure and composition influence meat and flesh quality Sci. World J. 2016 2016 66 

  28. 28. Gupta SK Metabolic engineering of CHO cells for the development of a robust protein production platform PLoS ONE 2017 12 66 

  29. 29. la Fuente IMD On the dynamics of the adenylate energy system: Homeorhesis vs homeostasis PLoS ONE 2014 9 108 676 

  30. 30. Levitt DE Chalapati N Prendergast MJ Simon L Molina PE Ethanol-impaired myogenic differentiation is associated with decreased myoblast glycolytic function Alcohol. Clin. Exp. Res. 2020 44 2166 2176 32945016 

  31. 31. Ryall JG Metabolic reprogramming as a novel regulator of skeletal muscle development and regeneration FEBS J. 2013 280 4004 4013 23402377 

  32. 32. Fortini P Iorio E Dogliotti E Isidoro C Coordinated metabolic changes and modulation of autophagy during myogenesis Front. Physiol. 2016 7 237 27378945 

  33. 33. Tomczak KK Expression profiling and identification of novel genes involved in myogenic differentiation FASEB J. 2004 18 403 405 14688207 

  34. 34. Fortini P The fine tuning of metabolism, autophagy and differentiation during in vitro myogenesis Cell Death Dis. 2016 7 66 

  35. 35. Homolak J Is galactose a hormetic sugar? Evidence from rat hippocampal redox regulatory network bioRxiv 2021 10.1101/2021.03.08.434370 

  36. 36. Luo S Comparative sensitivity of proliferative and differentiated intestinal epithelial cells to the food contaminant, deoxynivalenol Environ. Pollut. 2021 277 116 818 

  37. 37. Mugabo Y Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes Proc. Natl. Acad. Sci. USA 2016 113 E430 E439 26755581 

  38. 38. Kubišta V Accumulation of a stable phosphorus compound in glycolysing insect muscle Nature 1957 180 549 549 13477228 

  39. 39. Liu X Mitochondrial glycerol 3-phosphate dehydrogenase promotes skeletal muscle regeneration EMBO Mol. Med. 2018 10 66 

  40. 40. Lambert M Bastide B Cieniewski-Bernard C Involvement of O-GlcNAcylation in the skeletal muscle physiology and physiopathology: Focus on muscle metabolism Front. Endocrinol. 2018 9 578 

  41. 41. Shi H Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity Mol. Metab. 2018 11 160 29525407 

  42. 42. Ogawa M Terminal differentiation program of skeletal myogenesis is negatively regulated by O-GlcNAc glycosylation Biochim. Biophys. Acta Gen. Subj. 2012 1820 24 32 

  43. 43. Zumbaugh, M. D. Signaling Pathways Regulating Skeletal Muscle Metabolism and Growth (2021). 

  44. 44. Kumar A Metabolomic analysis of primary human skeletal muscle cells during myogenic progression Sci. Rep. 2020 10 11824 32678274 

  45. 45. Gray LR Tompkins SC Taylor EB Regulation of pyruvate metabolism and human disease Cell. Mol. Life Sci. 2014 71 2577 24363178 

  46. 46. Hyatt JPK Muscle-specific myosin heavy chain shifts in response to a long-term high fat/high sugar diet and resveratrol treatment in nonhuman primates Front. Physiol. 2016 7 77 26973542 

  47. 47. Talbot J Maves L Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease Wiley Interdiscip. Rev. Dev. Biol. 2016 5 518 27199166 

  48. 48. Abdelmoez AM Comparative profiling of skeletal muscle models reveals heterogeneity of transcriptome and metabolism Am. J. Physiol. Cell Physiol. 2020 318 C615 C626 31825657 

  49. 49. Brooks GA The science and translation of lactate shuttle theory Cell Metab. 2018 27 757 785 29617642 

  50. 50. Holeček M Mičuda S Amino acid concentrations and protein metabolism of two types of rat skeletal muscle in postprandial state and after brief starvation Physiol. Res 2017 66 959 967 28937247 

  51. 51. Mashima D Correlation between skeletal muscle fiber type and free amino acid levels in Japanese Black steers Anim. Sci. J. 2019 90 604 30811817 

  52. 52. Komiya Y Correlation between skeletal muscle fiber type and responses of a taste sensing system in various beef samples Anim. Sci. J. 2020 91 e134 25 

  53. 53. Roth, V. Doubling Time—Online computing with 2 points. Doubling Time Computing https://www.doubling-time.com/compute.php (2006). 

  54. 54. Torres-Guzmán R Preclinical characterization of abemaciclib in hormone receptor positive breast cancer Oncotarget 2017 8 69493 69507 29050219 

  55. 55. Schindelin J Fiji: An open-source platform for biological-image analysis Nat. Methods 2012 9 676 682 22743772 

  56. 56. Søgaard CK “Two hits—one stone”; increased efficacy of cisplatin-based therapies by targeting PCNA’s role in both DNA repair and cellular signaling Oncotarget 2018 9 32448 30197755 

  57. 57. Stafsnes MH Røst LM Bruheim P Improved phosphometabolome profiling applying isotope dilution strategy and capillary ion chromatography-tandem mass spectrometry J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018 1083 278 283 

  58. 58. MetaboAnalyst. https://www.metaboanalyst.ca/ . 

  59. 59. Droste P Miebach S Niedenführ S Wiechert W Nöh K Visualizing multi-omics data in metabolic networks with the software Omix—A case study Biosystems 2011 105 154 161 21575673 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로